Identifikasi Peptida Umami dan Kokumi pada Rumput Laut Sargassum aquifolium dengan Pendekatan In Silico
Abstract
Sargassum aquifolium memiliki kandungan protein dan asam glutamat yang tinggi, sehingga dapat dimanfaatkan menjadi bahan penyedap rasa. Rasa umami dapat dihasilkan oleh peptida taste-active yang berkontribusi dalam meningkatkan rasa umami dan memberikan sensasi rasa kokumi. Meskipun banyak penelitian mengenai peptida umami dan kokumi dalam bahan pangan, namun penelitian sejenis pada rumput laut belum banyak ditemukan. Analisis in silico telah banyak dilakukan untuk memprediksi dan mengidentifikasi peptida dengan taste-active umami dan kokumi pada bahan pangan dan efektif dalam mengevaluasi rasa peptida sebelum dilakukan evaluasi secara in vitro dan in vivo. Tujuan penelitian ini adalah memprediksi dan mengidentifikasi keberadaan peptida taste-active yang berkontribusi terhadap rasa umami dan kokumi pada rumput laut S. aquifolium dengan analisis in silico. Ekstraksi peptida S. aquifolium menggunakan pelarut air dengan metode reflux dan ultrasound, isolasi dan purifikasi peptida berdasarkan berat molekul. . Peptida hasil isolasi dianalisis berat molekulnya menggunakan Tricine-SDS-PAGE dan aktivitas sensori potensial secara in silico menggunakan database BIOPEP-UWM. Hasil penelitian menunjukkan analisis Tricine-SDS-PAGE menemukan 5 pita peptida yaitu 673 Da, 797 Da, 1.019 Da, 1.195 Da, dan 1.408 Da. Analisis in silico menunjukkan sekuen DFVEVPTGSN (1.019 Da) dan DTPDFVEVATESP (1.408 Da) diprediksi sebagai peptida umami yang ditandai adanya residu asam amino aspartat (D), dan asam amino glutamat (E), serta peptida ES, EV, TE, VE. Namun, tidak ditemukan peptida yang menunjukkan potensi kokumi. Pendekatan ekstraksi Water Soluble Extraction (WSE) menggunakan metode reflux dan ultrasound, serta pendekatan dengan in silico berhasil mengidentifikasi peptida taste-active umami, namun kurang efektif dalam mengidentifikasi peptida kokumi dari S. aquifolium .
ABSTRACT
Sargassum aquifolium has high protein and glutamic acid to be used as a flavor enhancer. The umami taste can be produced by taste-active peptides which contribute to enhancing umami taste and providing kokumi taste sensation. Although there has been a lot of research on umami and kokumi peptides, similar research on seaweed has not been widely found. In silico analysis has been carried out to predict and identify taste-active peptides umami and kokumi in food and is effective in evaluating the taste of peptides before in vitro and in vivo evaluation. This research aimed to predict and identify taste-active peptides that contributed to umami and kokumi in S. aquifolium using in silico analysis. This research consisted of extracting S. aquifolium peptides using water with reflux and ultrasound methods, isolating and purifying peptides based on molecular weight. The isolated peptides were analyzed for their molecular weight using Tricine-SDS-PAGE and in silico potential sensory activity analysis using the BIOPEP-UWM database. Based on the Tricine-SDS-PAGE analysis, found 5 peptide bands 673 Da, 797 Da, 1,019 Da, 1,195 Da, and 1,408 Da. In silico analysis showed that the sequences of DFVEVPTGSN (1,019 Da) and DTPDFVEVATESP (1,408 Da) were predicted as umami peptides characterized by the presence of aspartate (D) and glutamic (E) amino acid residues, as well as ES, EV, TE, and VE peptides. However, no peptides were found that showed kokumi potential. The Water Soluble Extraction (WSE) approach using the reflux and ultrasound method, as well as in silico approach, succeeded in identifying the taste-active umami peptide, but was less effective in identifying the taste-active kokumi peptide from S. aquifolium.
Keywords
References
Amin, M. N. G., Kusnadi, J., Hsu, J-L., Doerksen, R. J., & Huang, T-C. (2020). Identification of a novel umami peptide in tempeh (Indonesian fermented soybean) and its binding mechanism to the umami receptor T1R. Food Chemistry, 333(2). doi: 10.1016/j.foodchem.2020.127411
Arai, S., Yamashita, M., & Fujimaki, M. (1972). Glutamyl oligopeptides as factors responsible for tastes of a proteinase-modified soybean protein. Agricultural and Biological Chemistry, 36(7), 1253-1256. doi: 10.1080/00021369.1972.10860400
Baharuddin, M., Amat, H., Febryanti, A., Sappewati, & Azis, F. (2021). Characterization of sarcoplasmic protein in the meat using SDS-PAGE method. IOP Conference Series: Earth and Environmental Science, 762, 1-5. doi: 10.1088/1755-1315/762/1/012071
Barbarino, E., & Lourenҫo, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. Journal of Applied Phycology, 17(5): 447-460. doi: 10.1007/s10811-005-1641-4
Belter, P. A., Cussler, E. L. & Hu, W. S. (1988). Bioseparation Down Stream Processing for Biotechnology. New York, USA: John Wiley and Sons.
Cermeño, M., Kleekayai, T., Amigo-Benavent, M., Harnedy-Rothwell, P., & FitzGerald, R. (2020). Current knowledge on the extraction, purification, identification, and validation of bioactive peptides from seaweed. Electrophoresis, 41(20), 1694-1717. doi: 10.1002/elps.202000153
Chaudhari, N., Pereira, E., & Roper, S. D. (2009). Taste receptors for umami: the case for multiple receptors. The American Journal of Clinical Nutrition, 90, 738S-742S. doi: 10.3945/ajcn.2009.27462h
Choudhury, S., & Sekar, N. S. (2017). Algae as source of natural flavor enhancers – a mini review. Plant Science Today, 4, 172-176. doi: 10.14719/pst.2017.4.4.338
Claeys, E., De Smet, S., Balcaen, A., Raes, K., & Demeyer, D. (2004). Quantification of fresh meat peptides by SDS-PAGE in relation to ageing time and taste intensity. Meat Science, 67, 281-288. doi: 10.1016/j.meatsci.2003.11.001
Dunkel, A., Koster, J., & Hofmann, T. (2007). Molecular and sensory characterization of gamma-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 55(16), 6712-6719. doi: 10.1021/jf071276u
Dziuba, M., Iwaniak, A., & Minkiewicz, P. (2003). Computer-aided characteristicsof proteins as potential precursors of bioactive peptides. Polimery, 48(1), 50-53. Retrieved from https://polimery.ichp.vot.pl/index.php/p/article/view/1836
Feng, T., Wu, Y., Zhang, Z., Song, S., Zhuang, H., Xu, Z., Yao, L., & Sun, M. (2019). Purification, Identification, and Sensory Evaluation of Kokumi Peptides from Agaricus bisporus Mushroom. Foods, 8(43), 1-12. doi: 10.3390/foods8020043
Gomez-Ruiz, J. A., Taborda, G., Amigo, L., Ramos, M., & Molina, E. (2007). Sensory and mass spectrometric analysis of the peptidic fraction lower than one thousand daltons in Manchego Cheese. Journal of Dairy Science, 90(11), 4966-4973. doi: 10.3168/jds.2007-0350
Guiry, M. D., & Guiry, G. M. (2023a). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway (taxonomic information republished from AlgaeBase with permission of M. D. Guiry). Carpophyllum plumosum (A. Richard) J. Agardh, 1878. World Register of Marine Species. Retrieved from https://www.marinespecies.org/aphia.php?p=taxdetails&id=373349 on 12 October 2023.
Guiry, M. D., & Guiry, G. M. (2023b). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway (taxonomic information republished from AlgaeBase with permission of M. D. Guiry). Sargassum (Sargassum) ilicifolium (Turner) C. Agardh, 1820. World Register of Marine Species. Retrieved from https://www.marinespecies.org/aphia.php?p=taxdetails&id=211937 on 12 October 2023.
Guiry, M. D., & Guiry, G. M. (2023c). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway (taxonomic information republished from AlgaeBase with permission of M. D. Guiry). Sargassum thunbergii (Mertens ex Roth) Kuntze, 1880. World Register of Marine Species. Retrieved from https://www.marinespecies.org/aphia.php?p=taxdetails&id=494874 on 12 October 2023.
Harnedy, P. & FitzGerald, R. (2013). Extraction of protein from the macroalga Palmaria palmate. LWT-Food Science and Technology, 51(1): 375–382. doi: 10.1016/j.lwt.2012.09.023.
Hartley, I. E., Liem, D. G., & Keast, R. (2019). Umami as an ‘Alimentary’ Taste. A New Perspective on Taste Classification. Nutrients, 11(1), 1–18. doi: 10.3390/nu11010182
Hillmann, H., & Hofmann, T. (2016). Quantitation of Key Tastants and Reengineering the Taste of Parmesan Cheese. Journal of Agricultural and Food Chemistry, 64(8), 1794-1805. doi: 1 0.1021/acs.jafc.6b00112
Ikeda, K. (2002). New Seasonings. Chemical Senses, 27(9), 847–849. doi: 10.1093/chemse/27.9.847
Indumathi, P., & Metha, A., J. (2016). A novel anticoagulant peptide from the Nori hydrolysate. Journal of Functional Foods, 20, 606-617. doi: 10.1016/j.jff.2015.11.016
Iwaniak, A., Minkiewicz, P., Darewicz, M., & Hrynkiewicz, M. (2016a). Food protein-originating peptides as tastants – Physiological, technological, sensory, and bioinformatics approaches. Food Research International, 89, 27-38. doi: 10.1016/j.foodres.2016.08.010
Iwaniak, A., Minkiewicz, P., Darewicz, M., Sieniawski, K., & Starowicz, P. (2016b). BIOPEP database of sensory peptides and amino acids. Food Research International, 85, 155-161. doi: 10.1016/j.foodres.2016.04.031
Kadi, A. (2014). Seaweed sebagai produk alami dari perairan Indonesia. Jurnal Oseana, 32(3), 31-40. Retrieved from http://oseanografi.lipi.go.id/dokumen/os_xxxix_3_2014-4.pdf
Kęska, P., & Stadnik, J. (2017). Taste-active peptides and amino acids of pork meat as components of dry-cured meat products: An in-silico study. Journal of Sensory Studies, 32(6), 1-9. doi: 10.1111/joss.12301
Kong, Y. Zhang, L. L., Zhao, J. Zhang, Y. Y., Sun, B. G., & Chen, H. T. (2019). Isolation and identification of the umami peptides from shiitake mushroom by consecutive chromatography and LC-Q-TOF-MS. Food Research International, 121, 463-470. doi: 10.1016/j.foodres.2018.11.060
Kose, A. (2021). In silico bioactive peptide prediction from the enzymatic hydrolysates of edible seaweed rubisco large chain. Turkish Journal of Fisheries and Aquatic Sciences, 21(12), 615-626. doi: 10.4194/1303-2712-v21_12_04
Kurihara, K. (2015). Umami the Fifth Basic Taste: History of Studies on Receptor Mechanisms and Role as a Food Flavor. BioMed Research International, 2015, 1-10. doi: 10.1155/2015/189402
Kuroda, M., Kato, Y., Yamazaki, J., Kai, Y., Mizukoshi, T., Miyano, H., & Eto, Y. (2012). Determination and Quantification of γ-Glutamyl-valyl-glycine in Commercial Fish Sauces. Journal of Agricultural and Food Chemistry, 60, 7291-7296. doi: 10.1021/jf3012932
Kuroda, M., Kato, Y., Yamazaki, J., Kai, Y., Mizukoshi, T., Miyano, H., & Eto, Y. (2013). Determination and quantification of the Kokumi peptide, γ-Glutamyl-valyl-glycine, in commercial soy sauces. Food Chemistry, 141(2), 823-828. doi: 10.1016/j.foodchem.2013.03.070
Legler, G., Müller-Platz, C. M., Mentges-Hettkamp, M., Pflieger, G., & Jülich, E. (1985). On the Chemical Basis of the Lowry Protein Determination. Analytical Biochemistry, 150(2), 278-287. doi: 10.1016/0003-2697(85)90511-1.
Li, Q., Zhang, L., & Lametsch, R. (2020). Current progress in kokumi-active peptides, evaluation and preparation methods: a review. Critical Reviews in Food Science and Nutrition, 1-12. doi: 10.1080/10408398.2020.1837726
Li, X., Xie, X., Wang, J., Xu, Y., Yi, S., Zhu, W., Mi, H., Li, T., & Li, J. (2019). Identification, taste characteristics and molecular docking study of novel umami peptides derived from the aqueous extract of the clam Meretrix meretrix Lin-naeus. Food Chemistry, 312. doi: 10.1016/j.foodchem.2019.126053
Liu, Z., Zhu, Y., Wang, W., Zhou, X., Chen, G., & Liu, Y. (2020). Seven novel umami peptides from Takifugu rubripes and their taste characteristics. Food Chemistry, 330. doi: 10.1016/j.foodchem.2020.127204
Mæhre, H. K., Dalheim, L., Edvinsen, G. K., Elvevoll, E. O., & Jensen, I-J. (2018). Protein Determination – Method Matters. Foods, 7(5): 1-11. doi: 10.3390/foods7010005
Mikami, M., Sekikawa, M., & Shimada, K. (1999). Changes in peptides during conditioning of three type of beef samples. Proceedings of the 45th International Congress of Meat Science and Technology, 288-289. Yokohama, Japan.
Milinovic, J., Mata, P., Diniz, M., & Noronha, J. P. (2021). Umami taste in edible seaweeds: The current comprehension and perception. International Journal of Gastronomy and Food Science, 23, 1-9. doi: 10.1016/j.ijgfs.2020.100301
Minkiewicz, P., Dziuba, J., Iwaniak, A., Dziuba, M., & Darewicz, M. (2008). BIOPEP database and other programs for processing bioactive peptide sequences. Journal of AOAC International, 91 (4), 965-980. doi: 10.1093/jaoac/91.4.965
Miyamura, N., Kuroda, M., Kato, Y., Yamazaki, J., Mizukoshi, T., Miyano, H., & Eto, Y. (2014). Determination and Quantification of a Kokumi Peptide, γ-Glutamyl-Valyl-Glycine, in Fermented Shrimp Paste Condiments. Food Science and Technology Research, 20(3), 699-703. doi: 10.3136/fstr.20.699
Miyamura, N., Lida, Y., Kuroda, M., Kato, Y., Yamazaki, J., Mizukoshi, T., & Miyano, H. (2015). Determination and quantification of kokumi peptide, γ-glutamyl-valyl-glycine, in brewed alcoholic beverages. Journal of Bioscience and Bioengineering, 120(3), 311-314. doi: 10.1016/j.jbiosc.2015.01.018
Noble, J. E., & Bailey, M. J. A. (2009). Quantitation of protein. Methods Enzymol. 463, 73-95. doi: 10.1016/S0076-6879(09)63008-1
Noguchi, M., Arai, S., Yamashita, M., Kato, H., & Fujimaki, M. (1975). Isolation and identification of acidic oligopeptides occurring in a flavor-potentiating fraction from a fish protein hydrolysate. Journal of Agricultural and Food Chemistry, 23(1), 49-53. doi: 10.1021/jf60197a003
Oka, S., & Nagata, K. (1974). Isolation and characterization of acidic peptides in soy sauce. Agricultural and Biological Chemistry, 38(6), 1195-1202. doi: 10.1080/00021369.1974.10861306
Pakidi, C. S., & Suwoyo, H. S. (2017). Potensi dan Pemanfaatan Bahan Aktif Alga Cokelat Sargassum sp. Octopus: Jurnal Ilmu Perikanan, 6(1), 551–562. doi: 10.26618/octopus.v5i2.720
Pereira, L. (2011). A review of the nutrient composition of selected edible seaweeds. Seaweed: ecology, nutrient composition and medical uses. USA: Nova Science Publishers, Inc.
Pereira, L. (2016). Edible Seaweeds of the World. USA: CRC Press, Taylor & Francis Group, LLC.
Phewpan, A., Phuwaprisirisan, P., Takahashi, H., Ohshima, C., Ngamchuachit, P., Techaruvichit, P., Dirndorfer, S., Dawid, C., Hofmann, T., & Keeratipibul, S. (2020). Investigation of Kokumi Substances and Bacteria in Thai Fermented Freshwater Fish (Pla-ra). Journal of Agricultural and Food Chemistry, 68(38), 10345-10351. doi: 10.1021/acs.jafc.9b06107
Pinsorn, P., Oikawa, A., Watanabe, M., Sasaki, R., Ngamchuachit, P., Hoefgen, R., Saito, K., & Sirikantaramas, S. (2018). Metabolic Variation in the Pulps of Two Durian Cultivars: Unraveling the Metabolites that Contribute to the Flavor, Food Chemistry, 268, 118-125. doi: 10.1016/j.foodchem.2018.06.066
Poojary, M. M., Orlien, V., Passamonti, P., & Olsen, K. (2017). Improved extraction methods for simultaneous recovery of umami compounds from six different mushrooms. Journal of Food Composition and Analysis, 63, 171-183. doi: 10.1016/j.jfca.2017.08.004
Pratiwi, A. R., Fadlilah, I., Ananingsih, V. K., & Meiliana. (2021). Protein dan asam amino pada edible Sargassum aquifolium, Ulva lactuca, dan Gracilariopsis longissima. Jurnal Pengolahan Hasil Perikanan Indonesia, 24(3), 337-346. doi: 10.17844/jphpi.v24i3.37085
Pratiwi, A. R., Yonata, D., Meiliana, & Ananingsih, V. K. (2020). Metode Pembuatan Penyedap Rasa Berbahan Ganggang Sargassum aquafolium, Paten Indonesia. S00202009231
Ramos, M. V., Monteiro, A. C. O., Moreira, R. A., & Carvalho, A. D. F. A. F. U. (2000). Amino Acid Composition of Some Brazilian Seaweed Species. Journal of Food Biochemistry, 24, 33–39. doi: 10.1111/j.1745-4514.2000.tb00041.x.
Rhyu, M. R., & Kim, E. Y. (2011). Umami taste characteristics of water extract of Doenjang, a Korean soybean paste: Low-molecular acidic peptides may be possible clue to the taste. Food Chemistry, 127, 1210-1215. doi: 10.1016/j.foodchem.2011.01.128
Saepudin, E., Sinurat, E., & Suryabrata, I. A. (2018). Depigmentation and Characterization of Fucoidan from Brown Seaweed Sargassum binderi Sonder. IOP Conference Series: Materials Science and Engineering, 299, 1-5. doi: 10.1088/1757-899X/299/1/012027
Salger, M., Stark, T. D., & Hofmann, T. (2019). Taste modulating peptides from overfermented cocoa beans. Journal of Agricultural and Food Chemistry, 67(15), 4311-4320. doi: 10.1021/acs.jafc.9b00905.
Schägger, H. (2006). Protocol: Tricine-SDS-PAGE. Nature Protocols, 1(1), 16-22. doi: 10.1038/nprot.2006.4
Schägger, H., & Jagow, G. V. (1987). Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166 (2), 368-379. doi: 10.1016/0003-2697(87)90587-2
Schaich, K. M. (2016). Analysis of Lipid and Protein Oxidation in Fats, Oils, and Foods. Oxidative Stability and Shelf Life of Foods Containing Oils and Fats, 1-131. doi: 10.1016/B978-1-63067-056-6.00001-X
Shibata, M., Hirotsuka, M., Mizutani, Y., Takahashi, H., Kawada, T., Matsumiya, K., Hayashi, Y., & Matsumura, Y. (2017). Isolation and characterization of key contributors to the “kokumi” taste in soybean seeds. Bioscience, Biotechnology, and Biochemistry, 81(11), 2168-2177. doi: 10.1080/09168451.2017.1372179
Solms, J. (1969). Taste of amino acids, peptides, and proteins. Journal of Agricultural and Food Chemistry, 17 (4): 686-688. doi: 10.1021/jf60164a016
Su, G., Chi, C., Zheng, L., Yang, B., Ren, J., & Zhao, M. (2012). Isolation and identification of two novel umami and umami-enhancing peptides from peanut hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS. Food Chemistry, 135(2), 479-485. doi: 10.1016/j.foodchem.2012.04.130
Su, G., Ren, J., Yang, B., Cui, C., & Zhao, M. (2011). Comparison of hydrolysis characteristics on defatted peanut meal proteins between a protease extract from Aspergillus oryzae and commercial proteases. Food Chemistry, 126, 1306-1311. doi: 10.1016/j.foodchem.2010.11.083
Suzuki, H., Nakafuji, Y., & Tamura, T. (2017). New Method to Produce Kokumi Seasoning from Protein Hydrolysates Using Bacterial Enzymes. Journal of Agricultural and Food Chemistry, 65(48), 10514-10519. doi: 10.1021/acs.jafc.7b03690
Tajima, M., & Ito, T. (1999). Change in polypeptides in beef soup stock during simmering. Proceedings of the 45th International Congress of Meat Science and Technology, 186-187, Yokohama, Japan.
Temussi, P. A. (2011). The good taste of peptides. Journal of Peptide Science, 18, 73-82. doi: 10.1002/psc.1428
The UniProt Consortium. (2015). UniProt: a hub for protein information. Nucleic Acids Research, 43, D204-D212. doi: 10.1093/nar/gku989
Toelstede, S., & Hofmann, T. (2009). Kokumi-Active Glutamyl Peptides in Cheeses and Their Biogeneration by Penicillium roquefortii. Journal of Agricultural and Food Chemistry, 57, 3733-3748. doi: 10.1021/jf900280j
Udenigwe, C. C. (2014). Bioinformatics approaches, prospects and challenges of food bioactive peptide research. Trends in Food Science & Technology, 36, 137-143. doi: 10.1016/j.tifs.2014.02.004
Udenigwe, C. C., Okolie, C. L., Qian, H., Ohanenye, I. C., Agyei, D., & Aluko, R. E. (2017). Ribulose-1,5-bisphosphate carboxylase as a sustainable and promising plant source of bioactive peptides for food applications. Trends on Food Science and Technology, 69, 74-82. doi: 10.1016/j.tifs.2017.09.001
Ueda, Y., Sakaguchi, M., Hirayama, K., Miyajima, R., & Kimizuka, A. (1990). Characteristic Flavor Constituents in Water Extract of Garlic. Agriculture and Biological Chemistry, 54(1), 163-169. doi: 10.1080/00021369.1990.10869909
Wang, W., Cui, Z., Ning, M., Zhou, T., & Liu, Y. (2022). In-silico investigation of umami peptides with receptor T1R1/T1R3 for the discovering potential targets: A combined modeling approach. Biomaterials, 281. doi: 10.1016/j.biomaterials.2021.121338
Waterborg, J. H. (2009). The Lowry method for protein quantitation. In: Walker, J. M. (Ed.), The Protein Protocols Handbook, New York, USA: Human Press.
Winarno, F. G. (2008). Kimia Pangan dan Gizi. Jakarta, Indonesia: PT. Gramedia Pustaka Utama.
Wu, Q., Cai, Q. F., Yoshida, A., Sun, L. C., Liu, Y. X., Liu, G. M., Su, W. J., & Cao, M. J. (2017). Purification and characterization of two novel angiotensin I-converting enzyme inhibitory peptides derived from R-phycoerythrin of red algae (Bangia fusco-purpurea). European Food Research and Technology, 243(5), 779-789. doi: 10.1007/s00217-016-2792-z
Xu, X. You, M., Song, H., Gong, L., & Pan, W. (2018). Investigation of umami and kokumi taste-active components in bovine bone marrow extract produced during enzymatic hydrolysis and Maillard reaction. International Journal of Food Science and Technology, 53(11), 2465-2481. doi: 10.1111/ijfs.13893
Yamasaki, Y., & Maekawa, K. (1978). A peptide with delicious taste. Agricultural and Biological Chemistry, 42(9), 1761-1765. doi: 10.1080/00021369.1978.10863242
Yu, X., Zhang, L., Miao, X., Li, Y., & Liu, Y. (2017). The structure features of umami hexapeptides for the T1R1/T1R3 receptor. Food Chemistry, 221(15), 599-605. doi: 10.1016/j.foodchem.2016.11.133
Zhang, J. A., Sun-Waterhouse, D., Su, G. W., & Zhao, M. M. (2019a). New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends in Food Science and Technology, 88, 429-438. doi: 10.1016/j.tifs.2019.04.008
Zhang, N., Liu, H., Zhou, X., Wang, W., Fan, Y., & Liu, Y. (2022). Taste and stability characteristics of two key umami peptides from pufferfish (Takifugu obscurus). Food Chemistry, 371. doi: 10.1016/j.foodchem.2021.131124
Zhang, Y., Ma, Y., Ahmed, Z., Geng, W., Tang, W., Liu, Y., Jin, H., Jiang, F., Wang, J., & Wang, Y. (2019b). Purification and identification of kokumi-enhancing peptides from chicken protein hydrolysate. International Journal of Food Science and Technology, 54(6), 2151-2158. doi: 10.1111/ijfs.14122
Zhang, Y., Venkitasamy, C., Pan, Z., Liu, W., & Zhao, L. (2017). Novel Umami Ingredients: Umami Peptides and Their Taste. Journal of Food Science, 82(1), 16-23. doi: 10.1111/1750-3841.13576
Zhao, W., He, J., Yu, Z., Wu, S., Li, J., Liu, J., & Liao, X. (2022). In silico identification of novel small molecule umami peptide from ovotransferin. International Journal of Food Science Technology, 57(5), 2628-2635. doi: 10.1111/IJFS.15166
Zhao, Y., Zhang, M., Devahastin, S., & Liu, Y. (2019). Progresses on processing methods of umami substances: A review. Trends in Food Science and Technology, 93, 125–135. doi: 10.1016/j.tifs.2019.09.012.
Zhu, X., Sun-Waterhouse, D., Chen, J., Cui, C., & Wang, W. (2020). Comparative study on the novel umami-active peptides of the whole soybeans and the defatted soybeans fermented soy sauce. Journal of the Science of Food and Agriculture, 101(1), 158-166. doi: 10.1002/jsfa.10626
Zhuang, M., Zhao, M., Lin, L., Dong, Y., Chen, H., Feng, M., Sun-Waterhouse, D., & Su, G. (2016). Macroporous resin purification of peptides with umami taste from soy sauce. Food Chemistry, 190, 338-344. doi: 10.1016/j.foodchem.2015.05.105
DOI: https://doi.org/10.15578/jpbkp.v20i1.1003
Refbacks
- There are currently no refbacks.
JPBKP adalah Jurnal Ilmiah yang terindeks :
ISSN : 1907-9133(print), ISSN : 2406-9264(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.