Identifikasi Molekuler, Analisis Profil Asam Amino, dan Asam Lemak dari Beberapa Teripang Asal Perairan Indonesia

Tiara S. Khatulistiani, Ariyanti S. Dewi, Gintung Patantis


Teripang merupakan komoditas penting di Indonesia yang bermanfaat bagi kesehatan, namun eksplorasi terhadap kandungan nutrisinya masih terbatas. Penelitian ini bertujuan untuk mengetahui jenis, kandungan asam amino, dan asam lemak teripang segar asal perairan Indonesia. Sebanyak enam jenis teripang segar diperoleh dari berbagai lokasi yaitu Lampung, Gorontalo, Maluku Utara, dan Bali. Identifikasi spesies teripang dilakukan secara molekuler dengan metode Polymerase Chain Reaction (PCR), dan hasil sekuensing dibandingkan dengan basis data Basic Local Alignment Search Tool (BLAST). Analisis profil asam amino dan asam lemak berturut-turut dilakukan menggunakan Ultra High-Performance Liquid Chromatography (UPLC) dan Gas Chromatography-Flame Ionization Detector (GC-FID). Hasil identifikasi menunjukkan bahwa teripang alolo, cera merah, lolosong, cera hitam, dan pasir berturut-turut adalah Bohadschia marmorata, Holothuria edulis, H. impatiens, H. atra, dan H. scabra (alam dan budidaya). Kandungan asam amino non esensial (AANE) pada keenam sampel teripang didominasi oleh glisina dan asam glutamat, sedangkan asam amino esensial (AAE) tertinggi adalah treonina. Total asam amino tertinggi pada H. edulis yaitu 8,87 g/100g. Nilai rasio lisina/arginina pada semua sampel teripang <1,00. Asam lemak total tertinggi pada H. scabra alam dan budidaya (0,41%). H. atra, H. scabra alam, dan B. marmorata didominasi oleh asam lemak jenuh (ALJ), sedangkan H. scabra budidaya, H. edulis dan H. impatiens didominasi oleh asam lemak tak jenuh ganda (ALTJG). Rasio ALTJG/ALJ pada H. edulis, H. scabra budidaya, dan H. impatiens >1,00, sedangkan pada H. atra, H. scabra alam, dan B. marmorata sebesar <1,00. Berdasarkan hasil penelitian ini, dapat disimpulkan bahwa H. edulis dan H. impatiens memenuhi persyaratan nutrasetika.

Title: Molecular Identification, Amino Acid, and Fatty Acid Analysis of Sea Cucumbers from Indonesian Waters

Sea cucumber is an important Indonesian commodity with various health benefits. However, the reports on their nutrition content are still limited. This study aimed to identify several Indonesian sea cucumbers and determine their amino acid and fatty acid profiles. The fresh sea cucumbers were obtained from Lampung, Gorontalo, North Maluku, and Bali. Species identification was carried out using Polymerase Chain Reaction (PCR) method. The sequencing results were matched to the Basic Local Alignment Search Tools (BLAST) database. The determination of amino acid and fatty acid contents was performed using Ultra-High-Performance Liquid Chromatography (UPLC) and Gas Chromatography-Flame Ionization Detector (GC-FID). Alolo, cera merah, lolosong, cera hitam, and pasir were identified as Bohadschia marmorata, Holothuria edulis, H. impatiens, H. atra, and H. scabra (wild and cultured), respectively. Non-essential amino acids (NEAA) in the samples were dominated by glycine and glutamic acid. The highest Essential Amino Acid (EAA) was threonine. H. edulis contained the highest total amino acid, i.e., 8.87 g/100 g. The lysine/arginine ratios in all samples were <1.00. The highest total fatty acid was wild and cultured H. scabra (0.41%). The fatty acids of H. atra, wild H. scabra, and B. marmorata were dominated by saturated fatty acid (SFA). In contrast, in the cultured H. scabra, H. edulis, and H. impatiens were dominated by polyunsaturated fatty acid (PUFA)/SFA. The PUFA/SFA ratio of H. edulis and H. impatiens was >1.00, while the H. atra, wild H. scabra, and B. marmorata were <1.00. Based on this result, it is concluded that H. edulis and H. impatiens are potential for nutraceutical ingredients.


teripang; asam amino; asam lemak; rasio lisina/arginina; rasio ALTJG/ALJ

Full Text:



Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (2008). The universal protein resource (UniProt)rGapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17), 3389–3402. doi: 10.1093/nar/25.17.3389

Amir, N., Aprianto, R., Kasmiati, Matusalach, Fahrul, Syahrul, … Tresnati, J. (2020). Processing and quality characteristics sea cucumber Bohadschia vitiensis at Kambuno Island in Sembilan Islands, Bone Gulf, South Sulawesi, Indonesia. IOP Conference Series: Earth and Environmental Science, 1–9. doi: 10.1088/1755-1315/564/1/012047

Association of Official Analytical Chemists (AOAC). (2000). AOAC Official Method 969.33. AOAC International.

Aprianto, R., Amir, N., Kasmiati, Matusalach, Fahrul, Syahrul, … Tuwo, A. (2020). Bycatch sea cucumber Holothuria scabra processing and the quality characteristics. IOP Conference Series: Earth and Environmental Science, 1–9.

Brufau, G., Boatella, J., & Rafecas, M. (2006). Nuts: Source of energy and macronutrients. British Journal of Nutrition, 99(2), 447–448. doi: 10.1017/bjn20061860

Chen, J. (2004). Present status and prospects of sea cucumber industry in China. In Food and Agriculture Organization of the United Nations.

Choo, P. (2008). The Philippines : a hotspot of sea cucumber fisheries in Asia. Sea Cucumbers: A Global Review of Fisheries and Trade (FAO Fisheries and Aquaculture Technical Paper).

Dewi, A. S., Patantis, G., Fawzya, Y. N., Irianto, H. E., & Sa’diah, S. (2020). Angiotensin-Converting Enzyme (ACE) Inhibitory Activities of Protein Hydrolysates from Indonesian Sea Cucumbers. International Journal of Peptide Research and Therapeutics, 26, 2485–2493. doi: 10.1007/s10989-020-10035-5

Dioguardi, F. S. (2011). Clinical use of amino acids as dietary supplement: Pros and cons. Journal of Cachexia, Sarcopenia and Muscle, pp. 75–80. doi: 10.1007/s13539-011-0032-8

Engelking, L. R. (2015). Textbook Of Veterinary Physiological Chemistry (3rd ed.). In Oxford, UK: Elsevier, Academic Press.

Fabinyi, M. (2012). Historical, cultural and social perspectives on luxury seafood consumption in China. Environmental Conservation, 39(1), 83–92. doi: 10.1017/S0376892911000609

Food and Agriculture Organization (FAO). (2008). Sea cucumbers: A Global Review of Fisheries and Trade. In FAO Fisheries and Aquaculture Technical Paper 516.

Fawzya, Y. N., Januar, H. I., Susilowati, R., & Chasanah, E. (2015). Chemical Composition and Fatty Acid Profile of Some Indonesian Sea Cucumbers. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 10(1), 27–34. doi: 10.15578/squalen.v10i1.118

Firlianty, Suprayitno, E., Nursyam, H., & Mustafa, A. (2013). Chemical composition and amino acid profile of Channidae collected from Central Kalimantan , Indonesia. International Journal of Science and Technology, 2(4), 25–29.

Fox, J. M., Davis, D. A., Wilson, M., & Lawrence, A. L. (2006). Current Status of Amino Acid Requirement Research with Marine Penaeid Shrimp. Avances En Nutrición Acuícola VIII, 182–196.

Gaby, A. R. (2006). Natural remedies for Herpes simplex. Alternative Medicine Review, 11(2), 93–101.

Gianto, Suhanda, M., & Putri, M. (2017). Komposisi kandungan asam amino pada Teripang Emas ( Stichoupus horens) di Perairan Pulau Bintan, Kepulauan Riau. Jurnal Teknologi Hasil Perikanan, 6(2), 186–192. doi: 10.36706/fishtech.v6i2.5850

Gosch, B. J., Magnusson, M., Paul, N., & Nys, R. (2012). Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. GCB Bioenergy, 4, 919–930. doi: 10.1111/j.1757-1707.2012.01175.x

Guo, L., Gao, Z., Zhang, L., Guo, F., Chen, Y., Li, Y., & Huang, C. (2016). Saponin-enriched sea cucumber extracts exhibit an antiobesity effect through inhibition of pancreatic lipase activity and upregulation of LXR-a signaling. Pharmaceutical Biology, 54(8), 1312–1325. doi: 10.3109/13880209.2015.1075047

Hewitson, H. B., Wheat, T. E., & Diehl, D. M. (2007). Amino acid analysis of pure protein hydrolysates with Waters UPLC Amino Acid Analysis Solution (Application Note No. 720002404EN).

Her Majesty's Stationery Office (HMSO). (1994). Nutritional Aspects of Cardiovascular Disease. London.

Huang, N., Wu, M. Y., Zheng, C. B., Zhu, L., Zhao, J. H., & Zheng, Y. T. (2013). The depolymerized fucosylated chondroitin sulfate from sea cucumber potently inhibits HIV replication via interfering with virus entry. Carbohydrate Research, 380, 64–69. doi: 10.1016/j.carres.2013.07.010

Ibrahim, H. A. H. (2012). Antibacterial carotenoids of three Holothuria species in Hurghada, Egypt. Egyptian Journal of Aquatic Research, 38(3), 185–194. doi: 10.1016/j.ejar.2013.01.004

Kasai, K., Suzuki, H., & Nakamura, T. (1980). Glycine stimulates growth hormone release in man. Acta Endocrinologica, 93(3), 283–286. doi: 10.1530/acta.0.0930283

Komata, Y. (1990). Umami taste of seafoods. Food Reviews International, 6(4), 457–487. doi: 10.1080/87559129009540887

Kraal, A. Z., Arvanitis, N. R., Jaeger, A. P., & Ellingrod, V. L. (2020). Could dietary glutamate play a role in psychiatric distress?. Neuropsychobiology, 79(1), 13–19. doi: 10.1159/000496294

Larsen, D., Quek, S. Y., & Eyres, L. (2010). Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chemistry, 119(2), 785–790. doi: 10.1016/j.foodchem.2009.07.037

Mero, A. (1999). Leucine supplementation and intensive training. Sports Medicine, 27(6), 347–358. doi: 10.2165/00007256-199927060-00001

Mohamed, A. S., Mahmoud, S. A., Soliman, A. M., & Fahmy, S. R. (2019). Antitumor activity of saponin isolated from the sea cucumber, Holothuria arenicola against ehrlich ascites carcinoma cells in swiss albino mice. Natural Product Research, 1–5. doi: 10.1080/14786419.2019.1644633

Nursid, M., Marraskuranto, E., & Chasanah, E. (2019). Cytotoxicity and Apoptosis Induction of Sea Cucumber Holothuria atra Extracts. Pharmacognosy Research, 11(1), 41–46. doi: 10.4103/pr.pr_3_18

Nursid, M., Patantis, G., Dewi, A. S., Achmad, M. J., Sembodo, P. M., & Estuningsih, S. (2021). Immunnostimulatory activity of Holothuria atra sea cucumber. Pharmacia. 68, 121–127. doi: 10.3897/pharmacia.68.e58820

Ortiz, J. (2006). Dietary fiber , amino acid , fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98–104. doi: 10.1016/j.foodchem.2005.07.027

Patantis, G., Dewi, A. S., Fawzya, Y. N., & Nursid, M. (2019). Identification of beche-de-mers from Indonesia by molecular approach. Biodiversitas, 20(2), 537–543. doi: 10.13057/biodiv/d200233

Rahael, K. P., Rahantoknam, S. P. T., & Hamid, S. K. (2019). The amino acid of sandfish sea cucumber (Holothuria scabra): dry method with various feeding enzyme. Journal of Physics: Conference Series, 1424(1), 0–6. doi: 10.1088/1742-6596/1424/1/012005

Rajamohan, T., & Kurup, P. A. (1990). Antiatherogenic effect of a low lysine: arginine ratio of protein involves alteration in the aortic glycosamihoglycans and glycoproteins. Journal of Biosciences, 15(4), 305–311. doi: 10.1007/BF02702672

Ridhowati, S., & Asnani, A. (2015). Profil Asam Amino dan Asam Lemak Pada Teripang Pasir (Holothuria scabra) Olahan Belitung. Jurnal Matematika Sains Dan Teknologi, 16(2), 20–27.

Ridzwan, B. H., Hanita, M. H., Nurzafirah, M., Norshuhadaa, M. P. S., & Hanis, Z. F. (2014). Free fatty acids composition in lipid extracts of several sea cucumbers species from Malaysia. International Journal of Bioscience, Biochemistry and Bioinformatics, 4(3), 203–207. doi: 10.7763/IJBBB.2014.V4.340

Setyastuti, A., & Purwati, P. (2015). Species list of Indonesian trepang. SPC Beche-de-mer. Inf Bull, 35, 19–25.

Shi, L., Hao, G., Chen, J., Ma, S., & Weng, W. (2020). Nutritional evaluation of Japanese abalone ( Haliotis discus hannai Ino ) muscle : Mineral content , amino acid profile and protein digestibility. Food Research International, 129. doi: 10.1016/j.foodres.2019.108876

Sroyraya, M., Hanna, P. J., Siangcham, T., Tinikul, R., Jattujan, P., Poomtong, T., & Sobhon, P. (2017). Nutritional components of the sea cucumber Holothuria scabra. Functional Foods in Health and Disease, 7(3), 168–181. doi; 10.31989/ffhd.v7i3.303

Susilowati, R., Pratitis, A., & Januar, H. I. (2017). Composition of fatty acids in evaluation of sea cucumber potency for nutraceutical product development. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 11(2), 69–74. doi: 10.15578/squalen.v11i2.238

Turan, H., Kaya, Y., & Erdem, M. E. (2011). Proximate composition , cholesterol , and fatty acid content of brown shrimp (Crangon crangon L . 1758) from Sinop Region , Black Sea. Journal of Aquatic Food Product Technology, 20(1), 100–107. doi: 10.1080/10498850.2010.526753

Tuwo, A., & Conand, C. (1992). Developments in beche-de-mer production in Indonesia during the last decade. SPC Beche-de-Mer Information Bulletin, 4, 1–5.

Tuwo, A., Tresnati, J., & Saharuddin. (2012). Analysis of growth of sandfish Holothuria scabra cultured at different cultivated habitat. The Proceedings of The 2nd Annual International Conference Syiah Kuala University 2012 & The 8th IMT-GT Uninet Biosciences Conference Banda Aceh, 22-24 November 2012.

Vallabha, V. S., Tapal, A., Sukhdeo, S. V., Govindaraju, K., & Tiku, P. K. (2016). Effect of arginine:lysine ratio in free amino acid and protein form on l-NAME induced hypertension in hypercholesterolemic Wistar rats. RSC Advances, 6(77), 73388–73398.

van Sadelhoff, J. H. J., Mastorakou, D., Weenen, H., Stahl, B., Garssen, J., & Hartog, A. (2018). Short communication: Differences in levels of free amino acids and total protein in human foremilk and hindmilk. Nutrients, 10(12), 1828. doi: 10.3390/nu10121828

Wang, W., Wu, Z., Dai, Z., Yang, Y., Wang, J., & Wu, G. (2013). Glycine metabolism in animals and humans: Implications for nutrition and health. Amino Acids, 45(3), 463–477. doi: 10.1007/s00726-013-1493-1

Waters. (2012). Acquity UPLC H-class and H-class bio amino acid analysis. Acquity UPLC H-Class and H-Class Bio Amino Acid Analysis, 4–9.

Wen, J., Hu, C., & Fan, S. (2010). Chemical composition and nutritional quality of sea cucumbers. Journal of the Science of Food and Agriculture, 90, 2469–2474. doi: 10.1002/jsfa.4108

Widianingsih, Zaenuri, M., Anggoro, S., & Kusumaningrum, H. P. S. (2016). Nutritional value of sea cucumber [Paracaudina australis (Semper, 1868)]. Aquatic Procedia, 7, 271–276. doi: 10.1016/j.aqpro.2016.07.038

Wilson, R. P., & Cowey, C. B. (1985). Amino acid composition of whole body tissue of rainbow trout and Atlantic salmon. Aquaculture. 48, 373–376. doi: 10.1016/0044-8486(85)90140-1

Wong, K. H., & Cheung, P. C. K. (2001). Nutritional evaluation of some subtropical red and green seaweeds Part II. In vitro protein digestibility and amino acid profiles of protein concentrates. Food Chemistry, 72(1), 11–17. doi: 10.1016/S0308-8146(00)00176-X

Wu, M., Huang, R., Wen, D., Gao, N., He, J., Li, Z., & Zhao, J. (2012). Structure and effect of sulfated fucose branches on anticoagulant activity of the fucosylated chondroitin sulfate from sea cucumber Thelenata ananas. Carbohydrate Polymers, 87(1), 862–868. doi: 10.1016/j.carbpol.2011.08.082


Article Metrics

Abstract view : 593 times
PDF - 312 times


  • There are currently no refbacks.

JPBKP adalah Jurnal Ilmiah yang terindeks :

Creative Commons License

ISSN : 1907-9133(print), ISSN : 2406-9264(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.