Article Metrics

Abstract View: 177,
PDF Download: 78
             

Data citation

References Affenzeller, M. J., Dareshouri., Andosch, A., Lutz, C., & Meindi, U, L. (2009). Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany, 60 (3), 939-954. http://dx.doi.org/10.1093/jxb/ern348 Asulabh, K.S., Supriya, G., & Ramachandra, T.V. (2012). Effect of salinity concentrations on growth rate and lipid concentration in Microcystis sp., Chlorococcum sp., and Chaetoceros sp. Lake, 1-7. http://ces.iisc.ernet.in/energy. Azizullah, A., Richter, P., & Häder, D.P. (2012). Responses of morphological, physiological, and biochemical parameters in Euglena gracilis to 7-days exposure to two commonly used fertilizers dap and urea. Journal of Applied Phycology, 24, 21–33. http://dx.doi.org/10.1007/s10811-010-9641-4 Barabás, I., & Todoruţ, I.A. (2011). Biodiesel quality, standards and properties. In: Montero, G., Stoytcheva, M. (Eds.), Biodiesel-Quality, Emissions and By Products. InTech, Rijeka, pp 3–28. Bligh, E.G & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917. doi: 10.1139/o59-099. Borowitzka, L.J., Moulton, T.P., & Borowitzka, M.A. (1984b). The mass culture of Dunaliella salina for fine chemicals: From laboratory to pilot plant. In Proceedings of the International Seaweed Symposium; Springer: Dordrecht, The Netherlands, pp 115–212. Borowitzka, M.A. (2018a). Biology of Microalgae. In: Levine IA, Fleurence J (eds) Microalgae in health and disease prevention. Academic Press, London, pp 23–72. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analitical Biochemistry, 72, 248-254. https://doi.org/10.1006/abio.1976.9999. Calvayrac, R., Laval-Martin, D., Briand, J., & Farineau, J. (1981). Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O2 pressure. Planta, 153, 6–13. https://doi.org/10.1007/BF00385311. Chruch, J., Hwang, J.H., Kim, K.T., McLean, R., Oh, Y.K., Nam, B., Joo, J.C., & Lee, W.H. (2017). Effect of salt type and concentration on the growth and lipid content of Chlorella vulgaris in synthetic saline wastewater for biofuel production. Bioresource Technology, 243, 147-153. http://dx.doi.org/10.1016/j.biortech.2017.06.081. Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analitical Chemistry, 28, 350–356. https://doi.org/10.1021/ac60111a017 Duong, V.T., Li,Y., Nowak, E., & Schenk, P.M. (2012). Microalgae isolation and selection for prospective biodiesel production. Energies, 3, 1835–1849. https://doi.org/10.3390/en5061835. El-Katony, T.M., & El-Adl, M.F. (2020). Salt response of the freshwater microalga Scenedesmus obliquus (Turp.) kutz is modulated by the algal growth phase. Journal of Oceanology and Limnology, 38, 802–815. https://doi.org/10.1007/s00343-019-9067-z. Elloumi, W., Jebali, A., Maalej, A., Chamkha, M., & Sayadi, S. (2020). Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus sp. Biomolecules, 10.1515, 1-17. https://doi.org/10.3390/biom10111515. El-Sayed, A. (2004a). Circulation of Quaron Lake wastes. II-Growth of Scenedesmus sp. under Mg residences. Egyptian Journal of Biotechnology, 17, 477–485. http://www.americanscience.org/. El-Sayed, A. (2004b). Screening and growth characterization of the green life stock of drill water from Jeddah, Saudi Arabia. I-Isolation and growth characterization of Scenedesmus sp. N. Egyptian Journal of Microbiology, 8, 376–385.https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiazc2U_6j_AhXUumMGHRFdDkUQFnoECAgQAQ&url=https%3A%2F%2Fegyjs.journals.ekb.eg%2Farticle_114563_03b4dc21935566d7acf051828150e391.pdf&usg=AOvVaw0ByHegDOdlVwZV0q54w91Q. Erdmann, N., & Hagemann, M. (2001). Salt acclimation of algae and cyanobacteria: A comparison. In Algal Adaptation to Environmental Stresses; Rai, L.C., Gaur, J.P., Eds.; Springer: Berlin, Germany, pp 323–361. Erfianti, T., Maghfiroh, K.Q., Amelia, R., Kurnianto, D., Sadewo, B. R., Marno, S., Devi, I., Dewayanto, N., Budiman, A., Suyono, E. A. (2023). Nitrogen sources affect the growth of local strain Euglena sp. isolated from Dieng peatland, Central Java, Indonesia, and their potential as bio-avtur. IOP Conference Series: Earth Environmental Science. doi:10.1088/1755-1315/1151/1/012059. Fal, S., Aasfar, A., Rabie, R., Smouni, A., Arroussi, H.EL. (2022). Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamidomonas reinhardtii. Heliyon, 8, 1-11. https://doi.org/10.1016/j.heliyon.2022.e08811. Frank, I.B & Dubinsky, Z. (1999). Balanced growth in aquatic plants: myth or reality?: : Phytoplankton use the imbalance between carbon assimilation and biomass production to their strategic advantage. Bioscience, 49 (1), 29–37. http://dx.doi.org/10.1525/bisi.1999.49.1.29. Gissibl, A., Sun, A., Care, A., Nevalainen, H., & Sunna A. (2019). Bioproducts from Euglena gracilis: Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 7 (108), 1-16. https://doi.org/10.3389/fbioe.2019.00108. Goncalves, E.C., Wilkie, A.C., Kirst, M., & Rathinasabapathi, B. (2016). Metabolic regulation of triacylglycerol accumulation in the green algae: Identification of potential targets for engineering to improve oil yield. Plant Biotechnology Journal, 14, 1649–1660. https://doi.org/10.1111%2Fpbi.12523. Hanief, S., Prasakti, L., Pradana, Y.S., Cahyono, R.B., & Budiman, A. (2020). Growth kinetic of Botryococcus braunii microalgae using Logistic and Gompertz Models. AIP Conference Proceedings 2296(1). https://doi.org/10.1063/5.0030459. Hoekman, S.K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16, 143–169. https://doi.org/10.1016/j.rser.2011.07.143. Hounslow, E., Evans, C.A., Pandhal, J., Sydney,T., Couto, N., Pham, T.K., Gilmour, D.J., Wright, P.C. (2021). Quantitative proteomic comparison of salt stress in Chlamydomonas reinhardtii and the snow alga Chlamydomonas nivalis reveals mechanisms for salt-triggered fatty acid accumulation via reallocation of carbon resources. Biotechnology for Biofuels, 14 (121), 1-25. https://doi.org/10.1186/s13068-021-01970-6. Huflejt, M.E., Tremolieres, A., Pineau, B., Lang, J.K., Hatheway, J., & Packer L. (1990). Changes in membrane lipid composition during saline growth of fresh water Cyanobacterium synechococcus 6311. Plant Physiology, 94, 1512-1521. 0032-0889/90/94/1512/1 0/$01 .00/0. Ilman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strain calorific values when grown in low nitrogen medium. Enzyme and Microbial Technology, 27 (8), 631-635. https://doi.org/10.1016/s0141-0229(00)00266-0. Islam, M.A., Magnusson, M., Brown, R.J., Ayoko, G.A., Nabi, M.N., & Heimann, K. (2013). Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 6, 5676–5702. https://www.mdpi.com/1996-1073/6/11/5676#. Ji, C., Mao, X., Hao, J., Wang, X., Xue, J., Cui, H., & Li, R. (2018b). Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. International Journal of Molecular Science, 19 (9), 1-19. https://doi.org/10.3390/ijms19092800. Ji, X., Cheng, J., Gong, D., Zhao, X., Qi, Y., & Su, Y. (2018a). The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Science of Total Environment, 633, 593–599. https://doi.org/10.1016/j.scitotenv.2018.03.240. Jin, E.S., Polle, J.E., Lee, H.K., Hyun, S.M., & Chang, M. (2003). Xanthophylls in microalgae: From biosynthesis to biotechnological mass production and application. Journal of Microbiology and Biotechnology, 13 (2), 165–174. https://sciwatch.kiost.ac.kr/handle/2020.kiost/5525. Jump, D.B. (2002). The biochemistry of n-3 polyunsaturated fatty acids. Journal of Biological Chemistry, 277, 8755–8758. https://doi.org/10.1074/jbc.r100062200. Kakarla, R., Choi, J.W., Yun, J.H., Kim, B.H., Heo, J., Lee, S., Cho, D.H., Ramanan, R., & Kim, H.S. (2018). Application of high-salinity stress for enhancing the lipid productivity of Chlorella sorokiniana HS1 in a two-phase process. Journal of Microbiology, 56 (1), 56-64. https://doi.org/10.1007/s12275-018-7488-6. Kirst, G.O. (1989). Salinity tolerance of eukaryotic marine algae. Annual Review of Plant Physiology 41: 21–53. https://doi.org/10.1146/annurev.pp.41.060190.000321. Kumar, S.S., Basu, S., Gupta, S., Sharma, J., & Bishnoi, N. R. (2019). Bioelectricity generation using sulphate reducing bacteria as anodic and microalgae as cathodic biocatalysts. Biofuels, 10, 81–86. http://dx.doi.org/10.1080/17597269.2018.1426161. Lartigue, J., Neill, A., Hayden, B.L., Pulfer, J., & Cebrian, J. (2003). The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquatic Botany, 75 (4), 339-350. https://doi.org/10.1016/S0304-3770(02)00193-6. Lawton, R.J., Nys, R.D., Magnusson, M.E., & Paul, N.A. (2015). The effect of salinity on the biomass productivity, protein and lipid composition of a freshwater microalga. Algal Research, 12, 213-220. http://dx.doi.org/10.1016/j.algal.2015.09.001. Liu, W., Ming, Y., Li, P., & Huang, Z. (2012) Inhibitory effects of hypo-osmotic stress on extracellular carbonic anhydrase and photosynthetic efficiency of green alga Dunaliella salina possibly through reactive oxygen species formation. Plant Physiology and Biochemistry, 54, 43–48. https://doi.org/10.1016/j.plaphy.2012.01.018. Massyuk, N.P., & Abdula, E.G. (1969). First experiment of growing carotene-containing algae under semi-industrial conditions. Ukr. Bot. Zh 26: 21–27. Miquel, M & Browse, J. (1995). Role of polyunsaturated fatty acid s in growth and development of Arabidopsis. In: Plant Lipid Metabolism. © Springer Science Business Media Dordrecht, pp 237–272. Mirizadeh, S., Nosrati, M., & Shojaosadati, S. A. (2020). Synergistic effect of nutrient and salt stress on lipid productivity of Chlorella vulgaris through two-stage cultivation. Bioenergy Research, 13, 507-517. https://link.springer.com/article/10.1007/s12155-019-10077-8. Olabi, A. G., Shehata, N., Sayed, E.T., Rodriguez, C., Anyanwu, R.C., Russel, C., & Abdelkareem, M.A. (2023). Role of microalgae in achieving sustainable development goals and circular economy. Science of the Total Environment, 854, https://doi.org/10.1016/j.scitotenv.2022.158689. Pandit, P.R., Fulekar, M.H., & Karuna, M.S.L. (2017) Effect of salinity stress on growth, lipid productivity, fatty acid composition, and biodiesel properties in Acutodesmus obliquus and Chlorella vulgaris. Environmental Science Pollution Research, 24, 13437-13451. https://doi.org/10.1007/s11356-017-8875-y. Pasha, M.K., Dai, L., Liu, D., Guo, M., & Du, W. (2021). An overview to process design, simulation and sustainability evaluation of biodiesel production. Biotechnology for Biofuels, 14, (129): 1-23. https://doi.org/10.1186/s13068-021-01977-z. Peng, C., Lee, J.W., Sichani, H.T., & Ng, J.C. (2015). Toxic effects of individual and combined effects of BTEX on Euglena gracilis. Journal of Hazardous Materials, 284, 10–18. https://doi.org/10.1016/j.jhazmat.2014.10.024. Phukoetphim, N., Salakkam, A., Laopaiboon, P., & Laopaiboon L. (2017). Kinetic models for batch ethanol production from sweet sorghum juice under normal and high gravity fermentations: Logistic and modified Gompertz models. Journal of Biotechnol, 243, 69- 75. https://doi.org/10.1016/j.jbiotec.2016.12.012. Piotrowska, A., & Czerpak, R. (2009). Cellular response of light/dark grown green alga Chlorella vulgaris Beijerinck (Chlorophyceae) to Exogenous Adenine and Phenylurea-Type Cytokinins. Acta Physiologiae Plantarum, 31, 573-585. http://dx.doi.org/10.1007/s11738-008-0267-y. Pruvost, J., Vooren, G.V., Gouic, B.L., Mossion, A.C., & Legrand, J. (2011). Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresource Technology, 102 (1), 150-158. https://doi.org/10.1016/j.biortech.2010.06.153. Reed, R.H., Collins, J.C., & Russel, G. (1980). The influence of Variations in salinity upon photosynthesis in the marine alga Porhyra purpurea (ROTH) C. AG. (Rhodophyta, Bangiales). Zeitschrift-fur-Pflanzenphysiologie, 98 (2), 183-187. https://doi.org/10.1016/S0044-328X(80)80231-5. Rismani, S., & Shariati, M. (2017). Changes of the total lipid and omega-3 fatty acid contents in two microalgae Dunaliella salina and Chlorella vulgaris under salt stress. Brazilian Archieves Biology and Technology, 60, 1–11. https://doi.org/10.1590/1778-4324-errata-2018999909. Romanenko, E.A., Romanenko, P.A., Babenko, L.M., & Kosakovskaya, I.V. (2017). Salt stress effects on growth and photosynthetic pigments’ content in algoculture of acutodesmus dimorphus (Chlorophyta). International Journal on Algae, 19, 271–282. DOI: 10.1615/InterJAlgae.v19.i3.70. Roy, S.J., Negrao, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115-124. https://doi.org/10.1016/j.copbio.2013.12.004. Sánchez, J.F., Fernández, J.M., Acién, F.G., Rueda, A., Pérez-Parra, J., & Molina, E. (2008). Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochemistry, 43, 398–405. https://doi.org/10.1016/j.procbio.2008.01.004. Shen, Q. H., Gong, Y.P., Fang, W.Z., Bi, Z.C., Cheng, L.H., Xu, X.H., & Chen, H. L. (2015). Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresource Technology, 193, 68– 75. https://doi.org/10.1016/j.biortech.2015.06.050. Sinetova, M.A., Sidorov, R.A., Madvedeva, A.A., Starikov, A.Y., Markelova, A.G., Allakhverdiev, S.I., & Los, D.A. (2021). Effect of salt stress on physiological parameters of microalgae Vischeria punctata starin IPPAS H-242, a superproducer of eicosapentanoic acid. Journal of Biotechnology, 331, 63-73. https://doi.org/10.1016/j.jbiotec.2021.03.001. Srivastava, G., Nishchal., & Goud, V.V. 2017. Salinity induced lipid production microalgae and cluster analysis (ICCB 16-BR_047). Bioresource Technology, 242, 244-252. http://dx.doi.org/10.1016/j.biortech.2017.03.175. Tanaka, R and Tanaka, A. (2011). Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta-(BBA)-Bioenergetics,1807 (8), 968-976. https://doi.org/10.1016/j.bbabio.2011.01.002. Tietel, Z., Wikoff, W.R., Kind, T., Ma, Y., & Fiehn, O. (2019). Hyperosmotic stress in Chlamydomonas induces metabolomic changes in biosynthesis of complex lipids. European Journal of Phycology, 55, 11–29. https://doi.org/10.1080/09670262.2019.1637547. Timotius, V., Suyono, E.A., Suwanti, L.T., Koerniawan, M.D., Budiman, A., & Siregar, U.J. (2022). The content of lipid, chlorophyll and carotenoid of Euglena sp. under various salinities. Asia Pacific Journal of Molecular Biology and Biotechnology, 30 (3), 114-122. https://doi.org/10.35118/apjmbb.2022.030.3.10. Tomiyama, T., Kurihara, K., Ogawa, T., Maruta, T., Ogawa, T., Ohta, D., Sawa Y., & Ishikawa, T. (2017). Wax Ester Synthase/ Diacylglycerol Acyltransferase Isoenzymes Play a Pivotal Role in Wax Ester Biosyinthesis in Euglena gracilis. Scientific Reports, 7:13504, 1-13. https://doi.org/10.1038/s41598-017-14077-6. Toyama, T., Hanoka, T., Yamada, K., Suzuki, K., Tanaka, Y., Morikawa, M., & Mori, K. (2019). Enhanced production of biomass and lipids by Euglena gracilis via co-culturing with a microalga growth-promoting bacterium, Emticicia sp. EG3. Biotechnology for Biofuels, 12 (205), 1-12. https://doi.org/10.1186/s13068-019-1544-2. Wan, Afifudeen C.L., Loh, S.H., Aziz, A., Takahashi, K., Effendy. A.W.M., & Cha, T.S. (2021). Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Scientific Reports, 11, 1–14. https://doi.org/10.1038/s41598-020-79711-2. Wang, N., Qian, Z., Luo, M., Fan, S., Zhang, X., & Zhang, L. (2018). Identification of salt stress responding genes using transcriptome analysis in green alga Chlamydomonas reinhardtii. International Journal of Molecular Science, 19 (11), 3359: 1-16. https://doi.org/10.3390/ijms19113359. Yao, C. H., Ai, J.N., Cao, X.P., & Xue, S. (2013). Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresource Technology, 146, 663-671. https://doi.org/10.1016/j.biortech.2013.07.134. Yokoi, S., Bressan, R., & Hasegawa, P.M. (2002). Salt stress tolerance of plants. JIRCAS Working Report, 25-33. Yun, C.J., Hwang, K.O., Han, S.S., & Ri, H.G. (2019). The effect of salinity stress on the biofuel production potential of freshwater microalgae Chlorella vulgaris YH703. Biomass Bioenergy, 127, 1-7. http://dx.doi.org/10.1016/j.biombioe.2019.105277. Zhang, T.Y., Hu, H.Y., Wu, Y.H., Zhuang, L.L., Xu, X.Q., Wang, X.X., & Dao, G.H. (2016). Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/ bioenergy production. Renewable and Sustainable Energy Reviews, 60, 1602-1614. https://doi.org/10.1016/j.rser.2016.02.008. Zhekisheva, M., Boussiba, S., Khozin-Goldberg, I., Zarka, A., & Cohen, Z. (2002). Accumulation of oleic acid in Haematococcus pluvialis (chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters1. Journal of Phycology, 38, 325–331. https://doi.org/10.1046/j.1529-8817.2002.01107.x.

Refbacks

  • There are currently no refbacks.



Creative Commons License

ISSN : 2089-5690(print), E-ISSN : 2406-9272(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.