RESEARCH ARTICLE

Histological Alteration of Green Mussel Perna viridis Organs Exposed to Microplastics

Nur Fadhilah Rahim1 and Khusnul Yaqin2*

Abstract

Microplastic in the oceans might interfere with the health of marine organisms, including the green mussels (Perna viridis). This is due to microplastic accumulation in mussels organs, such as gills, hepatopancreas, and gonads. Therefore, tissue alteration is a good indicator for ecological risk analysis and other ecotoxicological study activities. Green mussels with shells 4.1 to 5.0 cm in length were collected from Mandalle waters, Pangkep Regency (Pangkajene Islands), Indonesia. Green mussels were exposed for seven days to microplastic with concentrations of 0.05 (A), 0.5 (B), and 5 (C) g/L. The results showed that the higher the concentration of microplastics exposed to the green mussel, the higher the accumulation of microplastics in the body of the mussel, within the tested concentrations. The increased concentration of microplastics increased the level of tissue alteration in the gills, hepatopancreas, and gonads, with the most sensitive organ being the hepatopancreas. Overall, the study confirmed that the histological assay of mussel organs could be used as a biomarker in ecotoxicological studies.

Keywords: green mussel, microplastic concentration, tissue alteration

Introduction

Plastic is light, strong, durable, inexpensive (Gamarro et al., 2020), and corrosion-resistant. It is also a good thermal and electrical insulator (Dowarah et al., 2020). These versatile characteristics have made plastics extensively used in daily life (Gamarro et al., 2020). The amount of plastic waste has reached 368 million tonnes since it was produced in the 1950s (Plastics Europe, 2020). In 2100, about 9.6–48.8 particles/m of plastics are predicted to float around the ocean (Prokic et al., 2019). This rapid increase in the production and distribution of plastic materials has an enormous impact on the environment and ecology (Prokic et al., 2019) because they are naturally difficult to degrade (Ma et al., 2019).

Plastics exist nearly everywhere in the environment, i.e., water, soil, air, etc (Sun et al., 2020). Approximately 1.15 - 2.41 million tons of plastic waste enter the oceans and keep increasing every year (Lebreton et al., 2017). Blettler et al. (2018) said that 87% of plastic pollution studies are related to marine environments and only 13% to freshwater systems. The plastic debris existence in the environment has attracted the attention of researchers, policymakers, the general public, and various environmental institutions (Gray et al., 2018).

Plastic particles with sizes less than 5 mm are called microplastics (Peixoto et al., 2019). Plastic materials are composed of polymers with varying types, sizes, shapes, and chemical compositions (Kühn et al., 2018). Microplastics may contain chemical pollutants like plastic monomers and additives or adsorb toxic contaminants from the marine environment (Boyle et al., 2020; Fernández et al., 2020; Luo et al., 2019; Zhang et al., 2020). Moreover, they could act as an additional exposure pathway to marine pollutants then transfer the hydrophobic contaminants to aquatic organisms (Webb et al., 2020). Hence, the impact of microplastics on marine life Occured individually and integrated with other marine pollutants (Gu et al., 2020).

Furthermore, the effects of microplastic exposure are varied across different marine and freshwater taxa (Foley et al., 2018). Microplastic exposure might affect feeding behavior, growth, reproduction, and survival (Galloway & Lewis, 2016). The size of microplastic makes them unintentionally consumed by various organisms, such as zooplankton (Botterell et al., 2019),
worms (Revel et al., 2018), mussels (Scott et al., 2019), sea urchins (Murano et al., 2020), and also on early life stages of marine bivalves (Bringer et al., 2020). Microplastics are bioavailable in every organism in trophic transfer by ingestion, bioaccumulation, and biomagnification (Au et al., 2017).

The mussel could accumulate microplastics during filter-feeding (Woods et al., 2018). Microplastics enter and meet the surface of the gills, then captured and trapped in the mucus. Thereafter, they will go through two processes. The first one is assimilated with the gill epithelium or transported into the mouth and hepatopancreas (Bråte et al., 2018; Kolandhasamy et al., 2018). The second process is related to the feeding process, independent of the type of microplastics (Wei et al., 2021). Microplastic particles can reduce feeding activity through decreased filtration rate (Pedersen et al., 2020), affecting the immune (Sýkdokur et al., 2020) growth and reproduction systems (Chae & An, 2017). They might change tissue morphology and even lead to tissue necrosis (Bråte et al., 2018).

Mussels are widely distributed, easily accumulate microplastics, and closely related to the food chain, making them a good sentinel organism for microplastic pollution (Li et al., 2019). They have physiological properties and biomarkers appropriate for assessing the effects of multiple stressors following environmental disturbances (Webb et al., 2020). Bivalve histopathology has become an essential instrument in aquatic toxicology, performed by many biomonitoring programmers worldwide (Cuevas et al., 2015). Woods et al. (2018) evaluated the ingestion rate and fate of microplastics taken up by Mytilus edulis; meanwhile, González-Soto et al. (2019) used M. galloprovincialis as a sentinel organism to observe the long-term effects of BaP-polystyrene exposure. Moreover, Webb et al. (2020) used Perna canaliculatus to examine the impact of microplastics individually and combined with tricosan. Dowarah et al. (2020) also used P. viridis to analyze the accumulation of microplastics from three estuaries.

Evaluating microplastic exposure in organisms from the natural environment is challenging. This is due to the microplastic heterogeneity, low abundance, and in the wild. The effects of microplastics are also difficult to be distinguished from those of other xenobiotic (Prokic et al., 2019). Therefore, laboratory-based studies are necessary to generate potential impacts of microplastic exposure (Kühn et al., 2018). Most studies about the toxicity of microplastics have focused on their impacts on marine invertebrates and vertebrates in laboratory conditions (Prokic et al., 2019).

There have not been many studies that determine the tissue damage of green mussel organs exposed to microplastics. Information on tissue alteration is important to conduct ecological risk analysis and other ecotoxicological studies. Consequently, this paper will discuss the tissue alteration of green mussel P. viridis due to microplastic exposure.

Material and Methods

Sample Collection

A total of 144 green mussels ranging from 4.1 to 5.0 cm in size were obtained from Mandalle waters, Pangkep Regency (Pangkajene Islands) in July 2019 (dry season). Green mussels were cleaned from biofouling, acclimatized for 14 days in an aquarium before the experiment, and fed with 1.2 g/L Spirulina sp daily before medium replacement (Rist et al., 2016). The acclimatization condition of the laboratory aquarium was as follows: 30 L seawater at 28 °C temperature, 35 °C salinity, and cell density of 77 x 106 cells/L (Yaqin et al., 2019). Prior to daily water replacement, pH, temperature, DO and salinity were measured (Lee et al., 2013).

Microplastic Preparation Methods

Microplastics were extracted from a commercial bath scrub. The bath scrub was dissolved with water then filtered using three different sieves (0.075, 0.125, and 0.180 mm). The particles were placed into a petri dish then heated in the oven at a temperature of 90 °C for 48 h (Bråte et al., 2018).

Exposure and Experimental Design

The samples were divided into four categories of treatments, i.e., control (no added pollutant), 0.05 (A), 0.5 (B), in triplicates and 5 (C) g/L of microplastics, in triplicate (Santana et al., 2017). Each of microplastic concentration used in this study was higher than those observed in the natural habitat (Colen et al., 2021). Approximately 0.1 g of the added pollutant contained 3,309 ± 239.4 microplastic particles.

Every 12 green mussels were placed in an aquarium containing five liters of seawater from Sea Ranching and Ecosystem Rehabilitation Laboratory, Hasanuddin University. The seawater was filtered with Unilever Pure It Water Purifier. The green mussels were exposed to bath scrub microplastic mixed with Spirulina and...
starch flour as added pollutants for seven days (Paul-Pont et al., 2016).

The media was changed every day (Pittura et al., 2018) to ensure the depurated microplastics by the green mussel were not re-filtered by the tested animals (Cauwenbergh & Janssen, 2014). Water quality measurements (pH, temperature, DO, and salinity) were carried out right before the media water replacement (Lee et al., 2013). The aquarium was aerated during the experiment to maintain the oxygen concentration required by the green mussels.

Microplastic and Histological Analysis

After seven days of exposure, the green mussels were removed from the aquarium; hereafter, the microplastics attached to the shells were cleaned using seawater. The green mussel tissue was dissected and transferred to a bottle containing 10% KOH solution. The volume of the KOH solution was three times the weight of the mussel tissue. Afterward, the tissue was stored for seven days at room temperature to digest the organic matter (Rochman et al., 2015). The dissolved green mussel tissue was then filtered using a vacuum pump by a 0.45 µm sterile membrane filter. Subsequently, the filtered microplastics were directly calculated and analyzed under a stereomicroscope (StereoBlue - Euromex).

Histological analysis was performed to analyze tissue alteration of the gills, hepatopancreas, and gonads. The target organs of the mussel were dissected out from the mussel shell and fixed with Bouin’s solution for 24 h. The organs were dehydrated using ethanol and xylene sequentially (80–100%) and embedded in paraffin. The embedded tissues were cut into a 4 µm section and mounted on a slide, followed by fixation and stained using hematoxylin-eosin according to the standard procedure. The stained slide was observed using a microscope (Olympus CX-23) for histological analysis (Arrighetti et al., 2018; Asaduzzaman et al., 2019).

Calculation of Histological Index \(I_h \)

Determination of gills, hepatopancreas, and gonads alteration can be seen in Table 1. The table summarized the observations of Bouallegui et al. (2017), Costa et al. (2013), and Cuevas et al. (2015). Each alteration has a different significance value \(w_j \) (ranging from 1 - 3), and each \(w_j \) value was followed by a score \(a_{jh} \). The score was assigned level 0 (no damage), 2 (minor), 4 (moderate), and 6 (severe). The provision as followed: the value of \(w_j = 1 \) for \(a_{jh} = 2 \), \(w_j = 2 \) for \(a_{jh} = 4 \), and \(w_j = 3 \) for \(a_{jh} = 6 \). The histological index \(I_h \) of the gills, hepatopancreas, and gonads was calculated using the formula of Costa et al. (2013) as follows:

\[
I_h = \frac{w_j a_{jh}}{M_j}
\]

Note:
- \(I_h \) = histological condition indices
- \(w_j \) = the weight of alteration
- \(a_{jh} \) = score of attribute
- \(M_j \) = the maximum attributable value

Table 1. General histological alteration of mussel organs

<table>
<thead>
<tr>
<th>Organ</th>
<th>Reaction pattern</th>
<th>Alteration</th>
<th>(w_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gill</td>
<td>Cell alteration</td>
<td>Lamellar fusion (Lf)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperplasia (hp)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loss of epithelia (Le)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Necrosis (n)</td>
<td>3</td>
</tr>
<tr>
<td>Hepatopancreas</td>
<td>Tubule alteration</td>
<td>Vacuolisation (v)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hyperplasia (hp)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tubule regression (tr)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Necrosis (n)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Intertubular alteration</td>
<td>Necrosis (n)</td>
<td>3</td>
</tr>
<tr>
<td>Gonad</td>
<td>Cell alteration</td>
<td>Hemocyte infiltration (hi)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Necrosis (n)</td>
<td>3</td>
</tr>
</tbody>
</table>

Data Analysis

The normality and homogeneity tests were used to process the data before analyzing the variance. The differences in microplastic accumulation were analyzed statistically using Parametric Anova. The histological alteration was observed descriptively.

Results and Discussion

Microplastics Accumulation

The average microplastic accumulation by green mussels in treatments A, B, and C were 109, 186, and 244 particles/individual, respectively (Figure 1). The statistical tests showed significant differences in the total microplastics between treatments A and B also A and C. However, there was no significant difference between treatments B and C, despite the increasing trend. The results showed that the higher the concentration of microplastics exposed to the green mussel, the higher the concentration of microplastics in the body of the mussel, within the tested concentrations.
Pedersen et al. (2020) explained that the pathway for microplastics enter the gills by pass through various vital organs. First of all, et al., 2019). Induced an injury-type inflammatory response (Prokic that circulating and tissue-accumulated microplastics and survival (Gu et al., 2020). Some studies indicate inflammatory responses and, later on, lower growth microplastic exposure, for a long time would run into 2018). Mussels living under pressures, such as concentrations lead to severe effects (Bour et al., 2016). M. Ciocan (2019) found different histological alteration of mussels due to NPs for eight days (Gornati et al., 2016). The lateral cilia due to exposure to 5 and 10 mg/L TiO2-2 inhibited the beating of cilia and decreased frontal and 2013). M. galloprovincialis (4–5 cm shell length) gills suffered thinning filament and decreased frontal and lateral cilia due to exposure to 5 and 10 mg/L TiO2-NPs for eight days (Gornati et al., 2016). Direct contact of the gill epithelium surface with pollutants in the environment will decrease the number of connections between filaments (Bråte et al., 2018).

The gill alterations of green mussels, such as lamellar fusion due to microplastic exposure, were characterized by attaching the two sides of the lamellae. Lamellae fusion is likely caused by lamella hyperplasia (Carvalho et al., 2020). This is also assumed to indicate cell degeneration and eventually a sign of early necrosis (Prihadi et al., 2017). Hyperplasia is characterized by enlargement of the epithelium due to an increasing number of cells that cause dilation on the lamellae; therefore, lamellar fusions were occurred (Figure 2). The histological changes included lamellar epithelium distortion hyperplasia and cellular connection formed by the two neighbouring filaments, observed in green mussels (sample from the environment) with sizes 6 – 7 cm collected from India (Vasanthi et al., 2021). These alterations occurred in response to contaminants exposure which could interfere with the filtering rate, gas transportation, feeding of mussels (Harilharan et al., 2021), ion regulation, and excretion of catabolic products (Arrighetti et al., 2018).

The following process was the stretched epithelium, the outermost layer of gill tissue. This process is characterized by the incomplete cell structure. These epithelium alterations were followed by necrosis in the gill cilia attached to the epithelium (Figure 2). The ciliary structure of the gills could damage by the presence of plastic particles (Vasanthi et al., 2021). M. edulis with a shell length of 4 – 6 cm exposed to 20 µg/L CdCl2 for eight days experienced alterations of the gills such as epithelial necrosis and loss of cilia (Sheir et al., 2013). M. galloprovincialis (4–5 cm shell length) gills suffered thinning filament and decreased frontal and lateral cilia due to exposure to 5 and 10 mg/L TiO2-NPs for eight days (Gornati et al., 2016). The destruction of the epithelial structure can affect the microplastic accumulation in Dreissena bugensis was likely mediated through microvilli on gill surfaces. Furthermore, they were creating passage into the gills via endocytosis. This is an additional potential pathway via ciliary movement, allowing transfer into the digestive tubules. The gills of mussels can regulate the filtration and sorting of particles based on their size, shape, nutritional value, or chemical component on the surface of the particle. Subsequently, the more nutritious particles are transported to the mouth for ingestion (Xu et al., 2016). Afterward, it could be defined that the gills become a major protective organ toward the accumulation of contaminants and important organs for metabolic processes of marine life (Zhu et al., 2020).

Tissue Alteration

The histological feature of the target organs reflected the health condition of mussels due to microplastic exposures (Bråte et al., 2018). The comparison between control and exposed treatment showed no histological alteration in the control treatment. Green mussels exposed to microplastics with various concentrations for seven days showed tissue alterations or damages in each organ. The level of alteration increased along with the increase of tested microplastic concentrations (Figures 2-4). Treatment A caused the gill tissue to experience hyperplasia. It has also caused the hepatopancreas tissue to encounter vacuolization, hyperplasia, and necrosis. Meanwhile, treatment B triggered lamellar fusion, loss of epithelia and necrosis as well as the increased level of alteration (vacuolization, hyperplasia, tubule regression, tubule & intertubular necrosis). Moreover, gonad tissue went through hemocyte infiltration caused by treatment A, followed the hemocyte infiltration and necrosis after exposure to treatment B (Figures 2-4). Koagouw & Ciocan (2019) found different histological damage compared to every group treatment, indicating a correlation between higher concentrations of microplastics. The largest particles and higher concentrations lead to severe effects (Bour et al., 2018). Mussels living under pressures, such as microplastic exposure, for a long time would run into inflammatory responses and, later on, lower growth and survival (Gu et al., 2020). Some studies indicate that circulating and tissue-accumulated microplastics induced an injury-type inflammatory response (Prokic et al., 2019).

Microplastics enter the body of green mussels and pass through various vital organs. First of all, microplastics enter the gills by cilia movement. Pedersen et al. (2020) explained that the pathway for
regular activities of the gill, such as filtering rate, gas transportation, and disrupted feeding (Hariharan et al., 2021).

The microplastic particles passed through the gill organs would be subsequently forwarded to the labial palps that rejected unwanted particles. Furthermore, they were disposed of in the form of pseudofoaces in sediment through the exhalant channel into the mouth and then forwarded into the hepatopancreas. Since microplastics contaminated the hepatopancreas, vacuoles (vacuolization) appeared in the hepatopancreas epithelium. They were characterized by the appearance of irregular empty spaces (Figure 3). Forming of vacuoles can indirectly affect the feeding behavior (Hariharan et al., 2021), hence could inhibit the absorption of ions needed by the body.

The subsequent alteration was hyperplasia in the hepatopancreas epithelium, characterized by a wavy-looking epithelium (Figure 3). This was occurred due to an increasing number of cell epithelium. Hyperplasia disturbs the digestive gland, metabolic, homeostatic balance processes, and the immune system that causes non-optimally detoxification processes (Rocha et al., 2016). Disorders of the hepatopancreas inhibited digestive and metabolic processes (Zupan & Kalafatic, 2003) that could finally interfere with the green mussels’ fitness.

Tubular regression of hepatopancreas in green mussels could be seen from the unclear lumen shape and cell loss, which subsequently became necrosis (Figure 3). Green mussels with sizes of 6–7 cm from Indian water experienced disruption in the lumen, i.e., lumen dilation and atrophy with the formation of cellular desquamate (Vasanthi et al., 2021). The destruction of cells in the tubules indicated necrosis (Katalay et al., 2016).

Intertubula plays a significant role in blood circulation. Hence, necrosis could obstruct blood circulation (Factor & Naar, 1985). Necrosis occurred in the tubules, and the intertubular could be seen from the irregular lumen structure; also the non-intact intertubular (Figure 3). Necrosis was also observed in intertubular tissue of M. galloprovincialis with sizes of 3.5–5.5 cm collected from sites contaminated with organic and inorganic toxicants along the coast (Cuevas et al., 2015). Microplastics last longer in the mollusc hepatopancreas (Woods et al., 2018) reasonably to their role in phases I and II detoxification.

![Figure 2](image1.png)
Figure 2. The gills tissue of green mussels (40x magnification). Lf: Lamellar fusion; hp: hyperplasia; Le: Loss of epithelia; n: necrosis (left). Histological index (I_h) of green mussels gills based on microplastics exposure level (right).

![Figure 3](image2.png)
Figure 3. The hepatopancreas tissue of green mussels (40x magnification): v: vacuolisation; hp: hyperplasia; tr: tubule regression, n: necrosis (left). Histological index (I_h) of green mussels hepatopancreas based on the level of microplastics exposure (right).
Figure 3 shows the necrosis of the hepatopancreas tissue. The microplastic accumulation in the digestive gland has impaired mussel activities with a consequent decrease in feeding behavior and physiological changes (Vasanthi et al., 2021). Microplastic accumulation followed by alterations of the tissue structures may affect biochemical pathways leading to failure of the digestive gland function. As a final consequence, it would lead to the death of the organism (Arrighetti et al., 2018).

The gonadal organs encountered hemocyte infiltrations indicated by an increase in the number of hemocytes (granular) in the tissue (Figure 4). Hemocyte infiltration is a histopathological condition frequently observed in animals after stress-inducing exposure (Koagouw & Ciocan, 2019). This was found in

\[M. \text{galloprovincialis} \] (3.5 – 4.5 cm shell length) exposed to polystyrene microplastics alone and mixed with benzo[a]pyrene for 26 days (González-Soto et al., 2019). Hemocyte infiltration was also observed in the apple snail Pomacea canaliculata (± 3 cm shell length) exposed to the insecticide Cypermethrin (10, 25, & 100 µg/L) for 14 days (Arrighetti et al., 2018) and in eastern oysters, Crassostrea virginica exposed to graphene oxide (1 & 10 mg/L) for 72 h (Khan et al., 2019). In addition, brown mussel P. perna (6 cm shell length) exposed to toxic dinoflagellate (900 cells/ml) for 96 h was also experienced hemocyte infiltration (Neves et al., 2019).

Hemocyte infiltration was categorized as a mild level (Yee-Duarte et al., 2018) as a consequence of an initial response to the body’s mechanism against the foreign substance. Hemocyte infiltration indicated a repairing process of damaged tissue (González-Soto et al., 2019); accordingly, the damaged tissue showed an inflammatory response (Costa et al., 2013). The increased number of hemocytes in the hemolymph vessels and the invasion of hemocytes into cells were signals of the defense mechanism in the body (David et al., 2008).

This microplastic exposure also caused necrosis in egg cells (Figure 4). Bråte et al. (2018) observed that the gonad tissues underwent necrosis after exposure to microplastics. Necrosis was caused by the cessation of egg maturation (Blazer, 2002). Based on the histopathological damage score, necrosis was categorized as the level of severe damage (Yee-Duarte et al., 2018). Necrosis impaired the fecundity and fertility of the organism (Galloway et al., 2017). Gonadal tissue damage and gamete viability were among the worst impacts of water pollution. These damages led to the decrease of reproductive success rate and the fitness of organisms (Vaschenko et al., 2013). Galloway & Lewis (2016) explained that ingestion of microplastics during gametogenesis negatively impacts reproduction in oysters.

Green mussels exposed to pollutants experienced tissue alteration that could inhibit their life system and disturb the food chain. Farrell & Nelson (2013) found microplastics in the hemolymph of crabs Carcinus maenas, consuming mussels edulis exposed to microplastics. Wright et al. (2013) also stated that microplastics would be initiated into the food chain by prey activity. Besides, microplastic exposed to oysters during gametogenesis could have adverse effects and would interfere with individual development in the future (Sussarellu et al., 2016).

Conclusion

This study provides information on the effects of microplastic exposure on tissue alterations of green mussels. Our findings are important to conduct ecological risk analysis and other ecotoxicological studies. Information on green mussel histology could complement a more comprehensive status of quality.
The effects of microplastics on other mussel organs, such as intestine and mantle need to be carried out in further studies. Within the tested concentrations, the higher the microplastic concentration exposed to the green mussel, the higher the concentration of microplastics in the body of the mussel. Microplastic exposure led to tissue alteration in the gills, hepatopancreas, and gonads. The severity level of alteration was increased along with the increased of microplastic exposure.

Acknowledgment

The author(s) received no financial support for this research and/or the publication of this article.

Supplementary Material

Supplementary material is not available for this article.

References

contamination levels and effects of confounding factors. *Aquatic Toxicology*, 162, 152–164. https://doi.org/10.1016/j.aquatox.2015.03.011

Ma, P., Wang, M. W., Liu, H., Chen, Y. F., & Xia, J. (2019). Research on ecotoxicology of microplastics on freshwater...

