
QUALEN Bulletin of Marine and Fisheries Postharvest and Biotechnology

Published Online: 30 December 2022                        Page 121 of 130

1  School of Health Sciences, Universiti Sains
Malaysia, 16150 Kubang Kerian, Kelantan,
Malaysia

2  Faculty of Science and Marine Environment,
Universiti Malaysia Terengganu, 21030 Kuala
Nerus, Terengganu, Malaysia

3 Department of Biological Sciences and
Biotechnology,  Faculty of Science and
Technology, Universiti Kebangsaan Malaysia,
43600 UKM-Bangi, Selangor, Malaysia

4 Malaysia Genome Institute, National Institutes
of Biotechnology Malaysia, Jalan Bangi,
Kajang 43000, Selangor, Malaysia. Current
Affi liation: Institute of Systems Biology,
Universiti Kebangsaan Malaysia, 43600 UKM-
Bangi, Selangor, Malaysia

*Corresponding Author:
shuhailamsr@usm.my

  Received: 20 July 2022
Accepted: 30 September 2022
Published: 30 December 2022
Academic Editor: Dr. Fazilah Ariffin

©Squalen Bulletin of Marine and Fisheries
Postharvest  and Biotechnology,  2021.
Accreditation Number:148/M/KPT/2020.
ISSN: 2089-5690, e-ISSN: 2406-9272.
https://doi.org/ 10.15578/squalen.680

OPEN ACCESS

SQUALEN BULLETIN

Structure Flexibility of Alpha-galactosidase
from a Marine Psychrophilic Yeast,
Glaciozyma antarctica PI12
Shuhaila Mat-Sharani1*, Reyad Al-Moheer2, Farah-Diba Abu-Bakar3, Nor-Muhammad
Mahadi4, and Abdul-Munir Abdul-Murad3

Abstract
Factors that contribute to maintaining the flexibility or stability of an enzyme
structure may depend on the composition of each amino acid with different
characteristics, providing a purpose and bonding features within the structure.
Based on this assumption, a study using homology modeling and a comparative
study to observe different structure behaviors of an enzyme at an extremely
low temperature (psychrophile) against temperate (mesophile) and high
temperature (thermophile) was performed. The subject, -galactosidase from
Glaciozyma antarctica as a marine psychrophilic candidate was chosen against
-galactosidase from Trichoderma reesei (mesophile) and Ramsonia emersonii
(thermophile). This enzyme catalyzes the hydrolysis of -1-6 linked terminal
galactosyl residues which can be found in a wide range of the organism. The
ability of G. antarctica to grow in extremely cold temperatures rendered the
question that the enzyme must have special characteristics to adapt to the cold
condition. Based on the homology modeling and molecular dynamics study, a
comparison of the structure of G. antarctica -galactosidase enzymes with its
homolog from the mesophilic and thermophilic fungi showed that G. antarctica
-galactosidase enzyme confers its flexibility by the increased number of small
amino acids with reduced charges, more loops, a fewer number of hydrogen
and disulfide bonds in its structure. Furthermore, -galactosidase has potential
for commercialization in bleach paper and the baking industry also a treatment
for bloating and Fabry disease.
Keywords: Glaciozyma antarctica, psychrophilic yeast, cold adaptation,

     structure flexibility, molecular dynamics

Introduction
Psychrophilic microorganisms growing at or below

15 °C are available in various permanently cold
environments, including Antarctica. For a long time,
Antarctica has been known as a geographical area that
is characterized and investigated by microbiologists to
harbor a diversity of cold-adapted microorganisms
(Bajaj & Singh, 2015). Psychrophilic microorganisms
that can survive under such extreme conditions require
complex physiological, morphological and metabolic
adaptations (Yusof et al., 2021). Enzymes, also defined
as proteins that can catalyze all biochemical reactions
within an organism that render them compatible with
life, are described as essential targets for the adaptation
of an organism to a cold environment (Parvizpour et

al., 2021). Cold-adapted enzymes are known for their
high catalytic efficiency at low temperatures resulting
from an inherent increase flexibility. This will allow
the molecular motions necessary for activity in low
energy environments leading to the observed low
stability of these enzymes (Collins et al., 2003). Several
factors can impact the flexibility of psychrophilic
enzymes including reduction of the density of a protein
structure, the number of hydrophobic side chains that
are exposed to the solvent, the high number of glycine
and lysine, the low number of arginine and proline and
the weak intramolecular bond (Metpally & Reddy, 2009;
Mohammadi et al., 2018).

The interest in cold-adapted enzymes, both as
models for thermal stability studies and molecular
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protein adaptation, and as potential candidates for
biotechnological applications has been long been
discussed (Adapa et al., 2022; Parvizpour et al., 2021;
Yusof et al., 2021). -Galactosidase (EC 3.2.1.22)
belonging to glycosyl hydrolase family 27 is an enzyme
involves in the hydrolysis of the terminal -galactosyl
moieties from oligosaccharides such as melibiose,
raffinose, stachyose and verbascose, galacto-
polysaccharides and glycoconjugates such as
glycolipids and glycoproteins (Álvarez-Cao et al., 2019;
Bhatia et al., 2020). -Galactosidase has been reported
to be found in a variety of organisms including bacteria
(Fei et al., 2020; Xu et al., 2014), fungi (Xie et al.,
2020), plants (Fujimoto et al., 2003; Tsaniklidis et al.,
2016) and human (Dwyer et al., 2021; Modrego et al.,
2021). This enzyme is widely used and mostly found
in the markets as intestinal gas prevention treatment
(Fabris et al., 2021), increasing crystallized sugar yield
(Belcourt & Labuza, 2007), improving bleaching in the
pulp and paper industry (Clarke et al., 2000), improving
the nutritional value of feed additives (Ghazi et al.,
2003), in the baking industry (Liljestrom-Suominen et
al., 1988) and in the medicinal treatment of Fabry
disease (Germain et al., 2016).

In elucidating the cold adaptation of psychrophilic
-galactosidase from G. antarctica, we modeled the
structure and compared it to the homologous -
galactosidase from mesophilic and thermophilic enzyme
of Trichoderma reesei and Ramsonia emersonii,
respectively. Molecular dynamic (MD) was also utilized
in this study to assess the flexibility of -galactosidase
of a marine psychrophilic yeast, G. antarctica with
mesophilic and thermophilic -galactosidase from
fungi.

Materials and Methods

cDNA Amplification of -galactosidase

First-strand cDNA was synthesized using a kit from
Super ScriptTM III First-Strand Synthesis System for
RT-PCR (Invitrogen, USA). A cDNA encoding -
galactosidase was amplified using specific primers Lan-
08-216F 5' ATGCTTCTCACTCGCCTCGGATCAC for
sense primer and Lan-08-216R 5' TCATCT CCACCGT
CCCCGCCTCACC for antisense primer. PCR products
were inserted into a pGEM-T Easy cloning vector,
transformed into E. coli DH5 and verified as -
galactosidase cDNA via sequencing.

-Galactosidase Data Mining

Glaciozyma antarctica  PI12 is a marine
psychrophilic yeast obtained from Casey Research
Institute, Antarctica (Firdaus-Raih et al., 2018). -
galactosidase sequence of G. antarctica encoded by

LAN_08_216 was downloaded from G. antarctica
database [http://mfrlab.org/glacier/]. The crystal
structure of mesophilic fungi, T. reesei 1SZN was
obtained from Protein Data Bank [http://www.rcsb.org]
while the sequence of the thermophilic enzyme from
R. emersonii (NCBI ID:XP 013331263.1) was retrieved
from National Center for Biotechnology Information
(NCBI) [http://www.ncbi.nlm.nih.gov/]. Amino acid
sequences from these three organisms were subjected
to various sequence analyses with BLASTP (Johnson
et al., 2008), ProtParam (Gasteiger et al., 2005),
InterProScan (Mulder & Apweiler, 2007) and
SignalPv4.0 (Petersen et al., 2011).

Sequence and Structure Analysis of
-galactosidases

The construction of predicted structures for both
-galactosidases from G. antarctica and R. emersonii
was done using MODELLER9v10 (Sali, 2008). Firstly,
both sequences were blasted against the PDB database
and a template was chosen based on the identity higher
than 30% and e-value lower than 10 × e-05. The
optimization and energy minimization of the resulting
model was performed using force field CHARM-22
and algorithm steepest descent from Accelrys
Discovery Studio 2.5. The structure quality was
evaluated using PROCHECK (Laskowski et al., 1996),
VERIFY3D (Eisenberg et al., 1997), ERRAT (Colovos
& Yeates, 1993) and ProSA-web (Wiederstein & Sippl,
2007). Structure superposition was performed with
SuperPose (Maiti et al., 2004). Both the hydrogen bonds
and the disulfide bond were defined using DSSP
(Kabsch & Sander, 1983), STRIDE (Heinig &
Frishman, 2004), and PDB file. Figures of all molecular
structures were generated using CHIMERA (Pettersen
et al., 2004).

Molecular Dynamic (MD) Simulation of
-galactosidases

MD simulations of -galactosidases were simulated
using GROMACS 4.5.5 and gromos 54A7 force field.
To examine the structure stability, MD simulation was
carried out at room temperature for G. antarctica, T.
reesei, and R. emersonii. -Galactosidases were
solvated in a 150 box of explicit simple point charge
(SPC) water molecules and stimulated using periodic
boundary condition (PBC) with a minimum of 0.1 nm
between solute and box. The structures were further
minimized by several steps for minimization using the
steepest descent method. Simulations at certain
temperatures were conducted with applied isotropic
pressure. The result showed that after 200 ps, all
systems were equilibrated using solute position-
restrained MD. LINCS algorithm was used to constrain
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bond length with a time step of 2 fs for all calculations.
The particle mesh Ewald (PME) summation was applied
to improve the electrostatic interactions. Van der Waals
and Coulomb interactions were truncated at 0.1 nm
and conformation was stored every 2 ps. The systems
were equilibrated then subjected to MD simulations
for 20 ns (20000 ps). Protein structures were further
visualized using Visual Molecular Dynamics (VMD).
The stability and flexibility were counted in backbone
root mean square deviations (RMSD) for 20 ns while
in carbon-alpha and protein-h root mean square
fluctuation (RMSF) from the last 5 ns.

Result and Discussion

cDNA Amplification of -galactosidase

The sequence of -galactosidase G. antarctica was
predicted from genome annotation analysis using
computational analysis. To validate the sequence, cDNA
was amplified and sequenced with an open reading
frame of 1404 bp. The protein consists of 467 amino
acid residues with a predicted molecular weight of 48.59
kDa and isoelectric PI of 4.7. Signal peptide analysis
of -galactosidase G. antarctica using SignalP 4.1
(Petersen et al., 2011) indicated the presence of a signal
peptide with 21 amino acids residues at the N- terminal
of the protein (Figure 1). The presence of a signal
peptide suggested that the protein is a secreted protein.
Furthermore, the presence of transmembrane protein
sequences was predicted using TMHMM software. It
was found that -galactosidase did not have any
transmembrane domain hence this suggests that the
protein was not located in the membrane.

-galactosidase Data Mining

The sequence of -galactosidase from G. antarctica
and thermophilic fungi of, R. emersonii were submitted
to BLASTP against the Protein Data Bank (PDB)
database to obtain a suitable template. Prior to that, the
signal peptides were removed from G. antarctica and
R. emersonii at a cleavage position of 21 and 24,
respectively. The result of the BLASTP against the PDB
suggested that -galactosidase from G. antarctica and
R. emersonii was built using a homology modeling
approach since the identity to the template was
approximately 50% with all known structures in the
PDB database. The G. antarctica -galactosidase
sequence matched with 3A5V chain A from mesophilic
fungi, Mortierella vinacea with 49% identity and the
resolution at 0.2 Å, while R. emersonii -galactosidase
matched with -galactosidase (1SZN chain A) from
mesophilic fungi, T. reesei with 59% identity and
resolution 1.54Å. The PDB structure from T. reesei
(1SZN) was thus selected as the highly probable

template for G. antarctica -galactosidase due to its
higher structural identity. It is noted that the sequence
alignment of  G. antarctica -galactosidase against T.
reesei and R. emersonii’s counterpart showed low
sequence identity, which is 32% and 39%, respectively.
Although the sequence similarity is low, all the
sequences have the same domain of -galactosidase.

Sequence Analysis of -galactosidase

The cold-adapted enzyme is capable of functioning
efficiently at low temperatures and this represents one
of the adaptive mechanisms for cold environments.
Some characteristics of the cold-adapted enzymes were
suggested based on the comparisons between the
primary structures of the respective enzymes from
different organisms with different growth temperature
ranges (Sheridan et al., 2000). Furthermore, analyses
of the crystal structures of cold-adapted enzymes
revealed the diversity of their cold adaptation
mechanisms (Bentahir et al., 2000; Russell et al., 1998).
Based on the amino acid composition, -galactosidase
from G. antarctica has a higher non-polar group than
-galactosidase from T. reesei and R. emersonii.

Figure 1. The cDNA and amino acid sequences of -galactosidase
from G. antarctica. The nucleotide sequences are represented
by lowercase, while amino acid sequences are represented by
uppercase letters. Amino acid sequences which are bold and
italic represent a signal peptide sequence. The stop codon was
indicated by asterisks. This cDNA has 1404 base pairs which
encode 467 amino acids.
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Besides that, several charges and the aromatic amino
acid group is lower in G. antarctica’s -galactosidase
compared to T. reesei and R. emersonii. The number
of small amino acids in G. antarctica’s -galactosidase
is higher compared to T. reesei and R. emersonii.
Furthermore, the psychrophilic enzyme has a greater
number of glycine, which may contribute to structure
flexibility. Editing to that, a lower number of charged
amino acids present in -galactosidase of G. antarctica
also contributes to increased flexibility due to the
interaction with ion pairs that are important in stabilizing
protein surface conformation (Table 1).

Many prolines were substituted in G. antarctica’s
-galactosidase at positions 2, 67, 136, 306, 320, 329,
338, and 365 with either hydrophobic (Alanine and
Valine), polar (glutamine and asparagine) or charged
(Aspartic acid) residue while proline is conserved
throughout T. reesei and R. emersonii (Figure 2).
Proline is inherently absent in a psychrophilic enzyme
such as G. antarctica’s -galactosidase. This is because
the amino acid side chain is covalently linked to the N–
C bond of the backbone (Davail et al., 1994), its
pyrrolidine ring imposes severe restrictions on the
conformational freedom, causing structural rigidity.
The strict dependence between main- and side-chain
proline conformations and the lack of a backbone
hydrogen-bonding donor. This structure limits proline
capability to form main-chain hydrogen bonds. Because
of these intrinsic properties, the presence of proline
strongly influences the protein structure by increasing
protein stability and local rigidity by reducing the
configurational entropy of unfolding and reducing the
flexibility of the structure.

Another amino acid group that contributes to the
stability of a protein is aromatic properties (tryptophan

Table 1. Amino acid composition of -galactosidase from G.
antarctica, T. reesei and R. emersonii analysis

G. antarctica T. reesei R. emersonii
Psychrophilic Mesophilic Thermophilic

446aa 417aa 428aa

Non-polar 
(A, G, F, I, L, 
M, P, V, W)

48.1% 47.0% 45.3%

Polar (C, N, 
Q, S, T, Y)

28.6% 27.6% 29.4%

Small (A, C, 
V, G, N, P, 
S, D, T)

45.0% 46.3% 43.5%

Gly (G) 9.1% 8.4% 9.6%

Pro (P) 4.1% 4.6% 6.1%

Charged(D, 
E, H, K, R)

20.2% 21.8% 21.0%

Glu (E) 4.3% 2.9% 4.7%

Asp (D) 6.4% 8.4% 7.7%

Aromatic                   
(F, H,W,Y) 

11.7% 13.2% 21.0%

Isoelectric 
point (pI)

5.1 5.0 4.5

GRAVY -0.17 -0.23 -0.42

Arg/ (Arg 
+lys) ratio

0.54 0.45 0.50

Figure 2. Multiple sequence alignment of -galactosidase from G. antarctica (psychrophilic), T. reesei (mesophilic), and R.
emersonii (thermophilic). Catalytic residue label as a triangle, amino acid in same group label as ‘:’ and conserved amino acid label
as‘*’.

and phenylalanine). An aromatic amino acid may
contribute to ion pair electrostatic interactions which
are a critical binding force to maintain conformational
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stability on the surface of the proteins (Metpally &
Reddy, 2009). Therefore, charged amino acids
conserved in T. reesei and R. emersonii were
substituted with small amino acids (Alanine, Proline,
Isoleucine, and Serine).

Substitutions of glycine were found in G. antarctica
species -galactosidase at positions 53, 102, 224, 228,
234, 237, 248, and 401 (Figure 2). This substitution
may increase structural flexibility since the main chain
of glycine is lack a side chain and this will allow chain
rotations and dihedral angles. A structure that can
change shape will reduce the energy required in
confirmation modification to interact with the substrate
(Thorvaldsen et al., 2007).

Other than the amino acid composition analysis,
secondary structure was predicted using STRIDE to
search for buried and exposed residue on secondary
structure (Figure 3). Thorvaldsen group reported that
more charged amino acid exposure will help an enzyme
interact with a solvent (Thorvaldsen et al., 2007). The
majority of exposed amino acids namely Asp, Glu, and
Lys were higher in G. antarctica’s -galactosidase
compared to T. reesei and R. emersonii’s. The
increment of charged residues at the surface of a
protein, especially the negatively charged amino acid
is important to increase solvent interaction and
structure flexibility.

Homology Modeling of -galactosidase

The structure of the enzyme will visualize the
features of the enzyme in a 3D form. The structure of

-galactosidase T. Reesei was already solved in the
PDB database. Therefore, the structure construction
of -galactosidase was done only for G. antarctica and
R. emersonii. There are more than 50% of identities in
the sequence alignment from BLAST search against
the PDB database. The structure of -galactosidase G.
antarctica and R. emersonii were created by
MODELLER using 3A5V and 1SZN as a template
(Golubev et al., 2004).

Structure validation of -galactosidase from G.
antarctica, T. Reesei, and R. emersonii was evaluated
using PROCHEK, VERIFY3D, ERRAT, and ProSA-
Web. PROCHECK analysis revealed the distribution of
amino acid backbone conformation that was evaluated
by inspecting the Psi/Phi Ramachandran plot
(Laskowski et al., 1993). The Ramachandran plot with
more than 80% residues located in the most favored
region showed a good structure of -galactosidase G.
antarctica and R. emersonii while others are in the
allowed, generous and disallowed region (Table 2). The
structure of -galactosidase T. reesei (1SZN) was also
analyzed for structure validation to make a comparison
of all three structures whereby 90% of residues are in
the most favored region (Table 2). Verify3D analyzed
the compatibility of the structure to its amino acid
sequence using a 3D profile derived from the atomic
coordinate structure. The 3D profiles of proper protein
structures match their sequence with a score of more
than 80% indicating good structure quality (Lüthy et
al., 1992) whereas -galactosidase of G. antarctica, T.
reesei and R. emersonii structures have more than 87%
residues complement with 1D-3D profile (Table 2).

Figure 3. Analysis of amino acid composition of secondary structure for -galactosidase enzyme. Exposed (+) or Buried (b) (-)
amino acid based on structure -galactosidase G. antarctica, T. reesei, and R. emersonii. The majority of exposed amino acids G.
antarctica are Gly, Ser, Cys, Lys, Gln, and Tyr compared to -galactosidase T. reesei and R. emersonii. While, Ala, Ile, Ser, and Val
are mostly buried amino acids in -galactosidase G. antarctica b compared to -galactosidase T. reesei b and R. emersonii b.
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ERRAT which is useful for finding incorrectly-folded
regions in preliminary protein models indicates an
overall quality factor for non-bonded atomic
interactions and higher scores mean better quality
(Colovos & Yeates, 1993). This analysis showed that
all -galactosidase structures have a good quality model
with a score of more than 80%. ProSA-web is an
interactive web service that recognizes errors in three-
dimensional protein structures (Wiederstein & Sippl,
2007). ProSA-web analyzes all -galactosidase
structures and denoted a value from -5 to -9 signifying
the range within native conformations. The findings
quoted above indicate that the protein model is reliable
and of good quality.

Structure Comparison Between -galactosi-
dase Psychrophilic Fungi, G. antarctica with
-galactosidase from Mesophilic and
Thermophilic Fungi

Superimpose analysis of three structures using
SuperPose (Maiti et al., 2004) and RMSD value show
for  carbon, backbone, and whole structure were
3.057 Å, 3.037 Å, and 3.130 Å, respectively. All the
structures showed to have a very similar structure.
Furthermore, two catalytic residues of -galactosidase
that are Asparagine were conserved in G. antarctica,
T. reesei, and T. emersonii at Asp129-Asp189, Asp132-
Asp226, and Asp133-Asp229, respectively (Figure 4).
The difference between -galactosidase G. antarctica

compared to -galactosidase T. reesei and R. emersonii
is the presence of long and many loops (Figure 4).
This suggests that -galactosidase G. antarctica is more
flexible than -galactosidase T. reesei and R. emersonii
(Georlette et al., 2003).

Hydrogen bond and disulfide bridge have been
reported to play a significant role in protein structure
stabilization (Tronelli et al., 2007). The disulfide bridge
is an important feature in the folding process and
analysis of structural properties and functions of a
certain protein (Tronelli et al., 2007). G. antarctica is
found to have less disulfide bridge and hydrogen bonds
compared to T. reesei and R. emersonii (Table 2). This
result suggested that G. antarctica has more flexible
structure compared to T. reesei and R. emersonii.

The structure of G. antarctica -galactosidase
contains three disulfide bridges namely Cys101-
Cys131, Cys201-Cys215, and Cys208-Cys203 that are
close around the catalytic site (Asp129 and Asp189)
as shown in Table 2. Therefore, it is suggested that G.
antarctica maintains its structural stability surrounding
the catalytic site to ensure the functionality of the
enzyme. Besides that, both -galactosidase T. reesei
and R. emersonii have four disulfide bridges in which
T. reesei at Cys24-Cys56, Cys104-Cys134, Cys160-
Cys147, and Cys392-Cys414 position. While, disulfide
bridges in R. emersonii were at Cys23-Cys55, Cys105-
135, Cys148-Cys163, and Cys405-Cys428 position
(Table 2). Three of these four disulfide bridges were
located around the catalytic site (Asp132-Asp226 and
Asp133-Asp229). Meanwhile, only one disulfide bridge
is in -galactosidase T. reesei and R. emersonii near
the N-terminal at Cys405-Cys428 and Cys392-Cys414
position, respectively. Thus, -galactosidase T. reesei
and R. emersonii have a more rigid structure compared
to -galactosidase G. antarctica structure.

Other than that, the hydrogen bond also helps
stabilize the protein structure. The low number of
hydrogen bonds will make the structure less rigid
(Tronelli et al., 2007). These analyses show that G.
antarctica has 510 hydrogen bonds while T. reesei and
R. emersonii have 536 and 517, respectively. Therefore,
the structure of -galactosidase G. antarctica is more
flexible than -galactosidase T. reesei and R. emersonii
because of the lower number of hydrogen bonds (Table
2).

To conclude, the G. antarctica enzyme has a high
number of small amino acids and a low number of
charged and aromatics amino acid group compared to
T. reesei and R. emersonii. Meanwhile, a non-polar
amino acid is higher in G. antarctica than in T. reesei
and R. emersonii. Furthermore, G. antarctica also has
a low number of disulfide bridges and hydrogen bonds.

G. antarctica T. reesei

(Psychrophilic) (Mesophilic)

PROCHEK 88.8% 89.4%
VERIFY3D 87.47% 96.04%
Errat 80.05% 79.76%
ProSA-Web -5.67 -9.1
RMSD 0.6 Å 0.5 Å
z-score 7.8 7.9
Template/   
Model

3a5v 2Å                        
(Mesophilic fungi)

1szn 1.54Å     
(Mesophilic fungi)

SIM 52.6% 58.7%
Intramolecule 
hydrogen 
bond

510 517

Disulfide 
bond 3 4

91.12%

R. emersonii

(Thermophilic)

94.2%

96.41%

4

-8.46

0.5 Å

-

-

-

536

Table 2 Structure validation -galactosidase from G. antarctica,
T. reesei and R. emersonii analysis
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In conclusion, G. antarctica structure is more flexible
with long and many loops and it also consists of amino
acids with small side chains compared to T. reesei and
R. emersonii (Figure 4).

Molecular Dynamic (MD) Simulation of -
galactosidases

To confirm the structural flexibility of G. antarctica,
MD analyses were carried out using GROMACS with
specific parameters. The molecular dynamics were done
for all structures -galactosidase G. antarctica, T.
reesei, and R. emersonii. MD simulation was performed
at room temperature (298 K) since the crystal structure
from T. reesei is a mesophilic microorganism that grows
at temperate temperature. Enzyme stability obtained
from RMSD analysis showed a consistent plot. The
-galactosidase G. antarctica has a very high RMSD
plot showing that it is not very stable at room
temperature because it is not able to grow above 20
°C and also this is a predicted model so there is a
probability that the molecule in the structure is not
stable. Furthermore, -galactosidase T. reesei is stable
at 298 K since it is in crystal structure while -
galactosidase R. emersonii is slightly high at starting
point of simulation but becomes more stable along 20
ns. This could be because it is a predicted model which
might not be stable at the start of a simulation (Figure
5a). Differences that stabilize the temperature of all -
galactosidase structures may be because of the living
environment whereby G. antarctica, T. reesei, and R.
emersonii lives at low, temperate, and high temperature,
respectively. This observation suggests that there is a
correlation between protein stabilizing and the

temperature of the study microorganism. To evaluate
and compare flexibility in the structure -galactosidase
G. antarctica, T. reesei and R. emersonii, the RMSF
analysis of C atom of -galactosidase was plotted to
study the average fluctuation of each residue during
the simulation. This was analyzed at the final 5 ns
because the system becomes stable after 15 ns
simulation. RMSF plot shows that a higher peak at a
certain region signifies a higher flexible region. The
result from the RMSF analysis showed that G.
antarctica is more flexible compared to T. reesei and
R. emersonii. This is because most of the residue in G.
antarctica has a higher rate of fluctuation compared to
T. reesei and R. emersonii across different temperatures
as shown in multiple peaks in Figure 5b. The B-factor
in G. antarctica simulation is 69% higher compared to
T. reesei and R. emersonii at only 17% and 15%,

Figure 4. Structure comparison of -galactosidase G. antarctica
(cyan), T. reesei (yellow), and R. emersonii (margenta) with
conserved catalytic residue position (ASP-ASP) (zoom in red
circle) while G. antarctica (cyan) has long and more loop and a
smaller number of disulfide bonds (CYS-CYS) compared to T.
reesei (yellow) and R. emersonii (margenta).

Figure 5. Molecular dynamic analyses on -galactosidase of G.
antarctica, T. reesei, and R. emersonii using GROMACS: a)
stability analysis based on RMSD analysis at a certain
temperature and b) flexibility analysis based on RMSF analysis
for -galactosidase G. antarctica (blue) more flexible with high
peak (red arrow) compared to T. reesei (green) dan R. emersonii
(red) according to secondary structure (arrow shape as helices
and rectangular as beta sheet).
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respectively. A high number of B-factors also indicates
higher structural flexibility. All of the results would
suggest that -galactosidase G. antarctica has higher
flexibility compared to T. reesei and R. emersonii. The
result may prove that G. antarctica has a flexible enzyme
structure in adaptation to extremely cold environments.

Conclusion

Comparative analysis of the structure of
psychrophilic, G. antarctica, against thermophilic, R.
emersonii, and mesophilic, T. reesei enzyme showed
that the conformational structure of psychrophilic
enzymes is more flexible compared to thermophilic and
mesophilic enzymes. There are factors involved in
enzyme flexibility to increase small amino acids mainly
Glycine and decrease collection of charged and
aromatic amino acids. Besides that, the enzyme
structure of G. antarctica -galactosidase was also
found to have weak intramolecular interactions including
the reduction of hydrogen bonding force and disulfide
bond that contributes to the flexibility of its structure.
Besides that, the result from molecular dynamics also
showed that the enzyme of psychrophilic of G.
antarctica shows high flexibility with many peaks
compared to the thermophilic enzyme of R. emersonii
and the mesophilic enzyme of T. reesei.
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