Cemaran Mikroplastik pada Ikan Pindang dan Potensi Bahayanya terhadap Kesehatan Manusia, Studi Kasus di Bogor

Gunawan Gunawan, Hefni Effendi, Endang Warsiki

Abstract


Tingginya akumulasi sampah plastik di perairan Indonesia dapat meningkatkan potensi cemaran mikroplastik. Ikan dan garam merupakan bahan baku utama pembuatan ikan pindang yang keduanya berpotensi membawa berbagai bahan cemaran, termasuk mikroplastik. Tujuan penelitian ini untuk mengetahui cemaran mikroplastik pada ikan pindang yang diproduksi oleh 5 pengolah di Tanah Sareal, Bogor Utara, Parung, dan Ciampea. Kandungan mikroplastik dianalisis dari 5 jenis ikan, yaitu bandeng (Chanos chanos), tongkol (Euthynnus affinis), layang (Decapterus russelli), semar/etem (Mene maculata), dan kembung (Rastrelliger kanagurta), yang meliputi daging ikan segar dan produk pindangnya, garam, dan air rebusan pindang. Identifikasi mikroplastik dilakukan terhadap hasil destruksi dengan H2O2 secara mikroskopis dan dikonfirmasi dengan FTIR-UATR. Hasil penelitian menunjukkan jumlah mikroplastik pada daging produk pindang berkisar antara 0,22±0,15 dan 0,69±0,12 MP/g atau meningkat sekitar 11-19% dibandingkan dengan bahan bakunya. Sebanyak 0,17±0,02 MP/g ditemukan pada sampel garam dan 0,10±0,02 MP/mL pada air rebusan pindang. Analisis FTIR-UATR menunjukkan bahwa mikroplastik yang dominan adalah polipropilena (PP) sebanyak 54% dalam bentuk fragmen atau film, dan polietilena (PE) sebanyak 46% dalam bentuk fiber atau fragmen. Perkiraan paparan mikroplastik akibat mengkonsumsi ikan pindang yang didasarkan pada tingkat konsumsi ikan pindang masyarakat Indonesia adalah 2,345±603 MP/orang/tahun. Kondisi tersebut mengindikasikan potensi bahaya apabila dikonsumsi terus-menerus, karena mikroplastik yang dapat bersifat akumulatif. Dengan demikian, perlu diupayakan pengurangan kandungan mikroplastik pada bahan utama ikan pindang dan garam dengan mengurangi pencemaran mikroplastik di perairan dan memperbaiki teknologi produksi garam.

Title: Microplastic Contamination of Boiled Salted Fish and Its Potential Hazards to Human Health, Case Study in Bogor

The high accumulation of plastic waste in Indonesian waters can increase the potential contamination of microplastic. Fish and salt are the primary raw materials for boiled salted fish, both of which can carry various contaminants, including microplastics. The objective of this study was to determine the presence of microplastic contamination in boiled salted fish produced by five processors in Tanah Sareal, North Bogor, Parung, and Ciampea. The microplastic content was analyzed from 5 types of fish, namely milkfish (Chanos chanos), mackerel tuna (Euthynnus affinis), indian scad (Decapterus russelli), moon fish (Mene maculata), and indian mackerel (Rastrelliger kanagurta), each of fresh fish and its boiled salted product, salt used, and boiled water. Microplastic identification was carried out microscopically on samples prepared by H2O2 destruction and further confirmed by FTIR-UATR. The results showed that the amount of microplastics in the products ranged from 0.22±0.15 to 0.69±0.12 MP/g or an increase of about 11-19% compared to the raw material. A total of 0.17±0.02 MP/g was found in the salt sample and 0.10±0.02 MP/mL in the boiling water sample. FTIR-UATR analysis showed that the dominant microplastic was polypropylene (PP) as much as 54% in fragments or film form, and polyethylene (PE) account for 46% in the form of fibers/fragments. The estimated exposure of microplastics due to consuming boiled salted fish based on the level of consumption of boiled salted fish in Indonesia is 2,345±603 MP/person/year. This condition indicates a potential danger if boiled salted fish is consumed at a large amount and continuously because of the cumulative nature of microplastics. So it is necessary to reduce the amount of microplastic content in the fish material and salt by reducing microplastic pollution in the waters and improving the salt production technology.


Keywords


ikan pindang, mikroplastik, garam, serat, fragmen

Full Text:

PDF

References


Abbasi, S., Soltani, N., Keshavarzi, B., Moore, F., Turner, A., & Hassanaghaei, M. (2018). Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere, 205, 80-87. doi: 10.1016/j.chemosphere.2018.04.076

Adawyah, R. (2011). Pengolahan dan pengawetan ikan. Jakarta(ID): Bumi Aksara.

Akhbarizadeh, R., Moore, F., & Keshavarzi, B. (2018). Investigating a probable relationship between microplastics and potentially toxic elements in fish muscles from northeast of Persian Gulf. Environ. Pollut., 232, 154-163. doi: 10.1016/j.envpol.2017.09.028

Anonim. (2011). Report on carcinogens, twelfth ed., 2011. Research Triangle Park, NC: US Department of Health and Human Services, Public Health Service, National Toxicology Program.

Anonim. (2018). Jumlah produksi olahan mikro berdasarkan jenis pengolahan di Jawa Barat. Internet. (Diakses: 2021 Agt 190]. Bandung (ID): Dinas Kelautan dan Perikanan Jawa Barat. Retrieved from: https://opendata.jabarprov.go.id/id /dataset/jumlah-produksi-olahan-mikro-berdasarkan-jenis-pengolahan-di-jawa-barat

Anonim. (2019a). Angka konsumsi ikan (AKI) tahun 2019. Internet. (Diakses: 2021 Sep 17). Jakarta(ID): Kementerian Kelautan dan Perikanan. Retrieved from:https://statistik.kkp.go.id/home.php?m=aki&i-209#panel-footer

Anonim. (2019b). Pembersih laut terbesar di dunia ini diklaim mampu angkat 90% sampah. Internet. (Diakses: 2021 Sep 12). Jakarta(ID): Liputan6: https://hot.liputan6.com/read/3993113/pembersih-laut-terbesar-di-dunia-ini-diklaim-mampu-angkat-90-sampah-keren#:~:text=System%20001%20

adalah%20alat%20sepanjang,arus%20air%20 lebih%20jauh%20lagi.

Anonim. (2020). PP (Polypropylene). Retrieved from: https://delta-engineering.be/pp

Agency for Toxic Substances & Disease Registry (ATSDR). (2015). Public health statement: polychlorinated biphenyls (PCBs). Retrieved from: https://wwwn.cdc.gov/TSP/PHS/PHP.aspx?phsid=139&

toxid=26

Barboza, L. G. A., Lopes, C., Oliveira, P., Bessa, F., Otero, V., Henriques, B., ... & Guilhermino, L. (2020). Microplastic in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Science of The Total Environment, 134625. doi:10.1016/j.scitotenv.2019.134625

Bouwmeester, H., Hollman, P. C., & Peters, R. J. B. (2015). Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicolgy. Environmental Sciece Technology, 49(15), 8932-8947. doi: doi.org/10.1021/acs.est.5b01090

Chae, D. H., Kim, I. S., Song, Y. K., Kim, S., & Kim, S. K. (2014). Development of analytical method for microplastics in seawater. The Sea:Journal of the Korean Society of Oceanography, 19(1), 88-98. doi: 10.7850/jkso.2014.19.1.88

Cordova, M., & Wahyudi, A. (2016). Microplastic in the Deep-Sea Sediment of Southwestern Sumatran Waters. Marine Research in Indonesia, 41(1), 27-35. doi: 10.14203/mri.v41i1.99

Cordova, M. R., Purwiyanto, A. I. S., & Suteja, Y. (2019). Abundance and characteristics of microplastics in the northern coastal waters of Surabaya, Indonesia. Marine Pollution Bulletin, 142, 83–188. doi: 10.1016/j.marpolbul.2019.03.040

Dewi, I. S., Budiarsa, A. A. & Ritonga, I. R. (2015). Distribusi mikroplastik pada sedimen di Muara Badak, Kabupaten Kutai Kartanegara. J. Depik, 4(3), 121-131. doi: 10.13170/depik.4.3.2888

Digka N., Tsangaris C., Torre M., Anastasopoulou A. & Zeri C. (2018). Microplastics in mussels and fish from the Northern Ionian Sea. Marine Pollution Bulletin, 135, 30-40.

Dinas Peternakan dan Perikanan Kabupaten Bogor. (Disnakan) (2020). Laporan tahunan tahun 2020. Bogor (ID): Dinas Peternakan dan Perikanan.

Dinas Keamanan Pangan dan Perikanan Kota Bogor (DKP). (2020). Laporan tahunan tahun 2020. Bogor (ID): Dinas Keamanan Pangan dan Perikanan.

Dinas Kelautan dan Perikanan Kabupaten Sukabumi (DKP). (2015). Laporan Tahunan Tahun 2015. Sukabumi (ID): Dinas Kelautan dan Perikanan.

Dwiyitno, Januar, H. I., Andayani, F., Gunawan, Barokah, G. R., Anissah, U., & Putri, A. K. (2018). Keamanan produk perikanan dari polutan organik dan marine debris (Mikroplastik). Laporan Teknis. Jakarta (ID): Badan Riset dan SDM, Kementerian Kelautan dan Perikanan.

Dwiyitno, Andayani, F., Anissah, U., Januar, H. I., & Wibowo, S. (2020). Concentration and characteristic of floating plastic debris in Jakarta Bay: a preliminary study. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechonology, 15(3) 2020, 109-117. doi: 10.15578/squalen.v15i3.462

Dwiyitno, Sturm, M. T., Januar, H. I., & Schuhen, K. (2021). Influence of various production methods on the microplastic contamination of sea salt produced in Java, Indonesia. Environmental Science and Pollution Research, 28, 30409–30413. doi: 10.1007/s11356-021-14411-6

Falahudin, D., Cordova, M. R., Sun, X., Yogaswara, D., Wulandari, I., Hindarti, D., & Arifin, Z. (2017). The first occurrence, spatial distribution andc haracteristics of microplastic particles in sediments from Banten Bay, Indonesia. Science of The Total Environment, 135304. doi:10.1016/j.scitotenv.2019.135304

Fauzi, F. (2016). Pengaruh degradasi termal polivinil klorida terhadap nilai konduktivitas. skripsi. Medan (ID). Universitas Sumatera Utara.

Fauziah, A. E. (2020). Mikroplastik pada saluran pencernaan ikan dari Teluk Palabuhanratu, Jawa Barat. skripsi. Bogor (ID). Institut Pertanian Bogor.

Firdaus, N. (2014). Analisis nilai tambah usaha pemindangan ikan (studi kasus di UD. Cindy Group, Kabupaten Bogor). skripsi. Bogor (ID). Institut Pertanian Bogor.

Gay, L. R., Mills, G. E., & Airasian, P. (2009). Educational research, competencies for analysis andapplication. New Jersey(US): Pearson Education, Inc.

Geueke, B. & Muncke, J. (2018). Substances of very high concern in food contact materials: migration and regulatory background. Packag. Technol. Sci., 31(12),757–769. doi: 10.1002/pts.2288

Halstead, J. E., Smith, J. A., Carter, E. A., Lay, P. A. & Johnston, E.L. (2018). Assessment tools for microplastics and natural fibers ingested by fish in an urbanised estuary. Environmental Pollution, 234, 552-561. doi: 10.1016/j.envpol.2017.11.085

Hastuti, A. R., Lumbanbatu, D. T. F., & Wardiatno, Y. (2019). The presence of microplastics in the digestive tract of commercial fishes off Pantai Indah Kapuk coast, Jakarta, Indonesia. Biodiversitas, 20 (5), 1233-1242. doi: 10.13057/biodiv/d200513

Hermana, I., Kusmarwati, A., & Yennie, Y. (2018). Isolasi dan identifikasi kapang dari ikan pindang. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 13(1), 81-92. doi: 10.15578/jpbkp.v13i1.492

Hildanilyulia. (2012). Tepung telur, ikan asin. aneka ikan pindang, bandeng presto (durilunak), chicken nugget. Teknologi Pangan dan Agroindustri. 8(1), 111-115.

Hiwari, H., Purba, N. P., Ihsan, Y. N., Yuliadi, L. P. S., & Mulyani, P. G. (2019). Kondisi sampah mikroplastik di permukaan air laut sekitar Kupang dan Rote, Provinsi Nusa Tenggara Timur. Prosiding Seminar

Nasional Masyarakat Biodiversitas Indonesia, 5(2), 165-171. doi: 10.13057/psnmbi/m050204

Holmes, L. A., Turner, A., & Thompson, R. C. (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160(1), 42-48. doi: 10.1016/j.envpol.2011.08.052

Horton, A. A., Jurgens, M.D., Lahive, E., van Bodegom, P. M., & Vijver, M. G. (2018). The influence of exposure and physiology on microplastic ingestion by the freshwater fish Rutilus rutilus (roach) in the River

Thames, UK. Environmental Pollution, 236, 188-194. doi: 10.1016/j.envpol.2018.01.044

Hussain, N., Jaitley, V., & Florence, A. T. (2001). Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Advanced Drug Delivery Reviews, 50, 107-142. doi: 10.1016/S0169-409X(01)00152-1

International Agency for Research on Cancer (IARC). (1987). Overall evaluations of carcinogenicity: an updating of IARC monographs, IARC monographs on the evaluation of carcinogenic risks to humans, Vol 1–42, Suppl. 7. International Agency for Research on Cancer, Lyon.

International Agency for Research on Cancer (IARC). (1994). Some industrial chemicals. IARC monographs on the evaluation of carcinogenic risks, vol. 60. International Agency for Research on Cancer, Lyon.

International Chemical Safety Cards (ICSC). (1998). ICSC: International chemical safety cards no. 0820, 1998 validated. National Institute for Occupational Safety and Health.

Iñiguez, M. E., Conesa, J. A., & Fullana, A. (2017). Microplastics in Spanish table salt. Scientific Reports, 7, 8620. doi:10.1038/s41598-017-09128-x.

Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., ... & Law, K. L. (2015). Plastic waste inputs from land into the ocean. Science, 347(6223), 768-771. doi: 10.1126/science.1260352

Jiang, J. Q. (2018). Occurrence of microplastics and its pollution in the environment: a review. Sustainable Production and Consumption, 13, 16–23. doi: 10.1016/j.spc.2017.11.003

Kim, J. S., Lee, H. -J., Kim, S. K., & Kim, H. J. (2018). Global pattern of microplastics (MPs) in commercial food-grade salts: sea salt as an indicator of seawater MP pollution. Environmental Science & Technology. doi:10.1021/acs.est.8b04180

Kementerian Kelautan dan Perikanan (KKP). (2019). Kelautan dan perikanan dalam angka. Jakarta (ID):KKP

Lahimer, M. C., Ayed, N., Horriche, J., & Belgaied, S. (2017). Characterization of plastic packaging additives: Food contact, stability and toxicity. Arabian Journal of Chemistry, 10, S1938–S1954. doi:10.1016/j.arabjc.2013.07.022

Lusher, A., Welden, N. A., Sobral, P., & Cole, M. (2017). Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Analytical Methods, 9, 1346–1360. doi: 10.1039/c6ay02415g.

Lusher, A. L., Hollman, P. C. H., & Mendoza-Hill, J. J. (2017). Microplastics in fisheries and aquaculture - status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO, Fisheries and Aquaculture Techincal paper, 978-92-5-109882-0.

Massos, A. & Turner, A. (2017). Cadmium, lead and bromine in beached microplastics. Environmental Pollution, 227, 139–145. doi: 10.1016/j.envpol.2017.04.034.

Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., & Kaminuma, T. (2001). Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environmental Science Technology, 35, 318-324. doi: 10.1021/es0010498.

Muncke, J. (2009). Exposure to endocrine disrupting compounds via the food chain: is packaging a relevant source?, Science of the Total Environment, 407(16),4549–4559.doi:10.1016/j.scitotenv.2009.05.006.

National Oceanic and Atmospheric Administration (NOAA). (2015). Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. U.S. Department of Commerce Technical Memorandum NOS-OR&R-48

Ogata, Y., Takada, H., Mizukawa, K., Hirai, H., Iwasa, S., Endo, S., ... & Thompson, R. C. (2009). International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. Initial phase data on PCBs, DDTs, and HCHs. Marine Pollution Bulletin, 58,1437–1446. doi: 10.1016/j.marpolbul.2009.06.014.

Papadopoulos, V. (2007). The leydig cell in health and disease. A.H.

Payne, M.P. Hardy (Eds.), Environmental factors that disrupt leydig cell steroidogenesis, Humana Press, Totowa, NJ (2007), pp. 393-415

Pegado, T. S. S., Schmid, K., Winemiller, K. O, Chelazzi, D, Cincinelli, A., Dei, L. & Giarrizzo, T. (2018). First evidence of microplastic ingestion by fishes from the Amazon River estuary. Marine Pollution Bulletin, 133, 814-821

Peixoto, D., Pinheiro, C., Amorim, J., Oliva-Teles, L., Guilhermino, L., & Vieira, M. N. (2019). Microplastic pollution in commercial salt for human consumption: A review. Estuarine, Coastal and Shelf Science. doi:10.1016/j.ecss.2019.02.018

Pohanish, R. P. (2017). Sittig’s handbook of toxic and hazardous chemicals and carcinogens. Elsevier, Amsterdam(ND). doi:10.1016/B978-1-4377-7869-4.00030-8

Riyanto, S. (2011). Quality characteristized boiled fish motan (Thynnichthys polylepis) with different boiling time.skripsi. Riau (ID): Univesitas Riau.

Rieux, A. Des., Ragnarsson, E. G. E., Gullberg, E., Préat, V., Schneider, Y. J., & Artursson, P. (2005). Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. European Journal of Pharmaceutical Sciences, 25, 455–465. doi: 10.1016/j.ejps.2005.04.015.

Rochman, C. M., Hentschel, B. T., & Teh, S. J. (2014). Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. Plos One 9(1), e85433.

Rochman, C. M., Tahir, A., Williams, S. L., Baxa, D. V., Lam, R., Miller, J. T., ... & Teh, S. J. (2015). Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports 5, 14340. doi:10.1038/srep14340.

Sari, S.M. (2016). Buntut mogok Muara Baru: pembuat pindang mulai kesulitan bahan baku. Internet. [Diunduh: 2020 Apr 28]. Jakarta (ID):Bisnis.com. Tersedia pada: https://kalimantan.bisnis.com/read/20161016/99/592968/ buntut-mogok -muara - baru-pembuat-pindang-mulai-kesulitan-bahan-baku

Sembiring, E., Fareza, A. A., Suendo, V. & Reza M. (2020). The presence of microplastics in water, sediment, and milkfish (Chanos chanos) at the downstream area of Citarum River, Indonesia. Water, Air, & Soil Pollution 231, 355. doi: 10.1007/s11270-020-04710-y

Shinshi, O. & Kogo, H. (1980). Effect of phthalic acid esters on mouse testes. Toxicology Letters, 5(6), 413-416. doi: 10.1016/0378-4274(80)90024-7

Smith, M., Love, D. C., Rochman, C. M., & Neff, R. A. (2018). Microplastics in seafood and the implications for human health. Current Environmental Health Reports, 5, 375–386. doi: 10.1007/s40572-018-0206-z.

Silva, A. B., Bastos, A. S., Justino, C. I. L., da Costa, J. P., Duarte, A. C., & Rocha-Santos, T. A. P. (2018). Microplastics in the environment: challenges in analytical chemistry-A review. Analytica Chimica Acta., 1017, 1-19. doi: 10.1016/j.aca.2018.02.043

Song, Y. K., Hong, S. H., Jang, M., Han, G. M., Rani, M., Lee, J., &

Shim, W. J. (2015). A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Marine Pollution Bulletin, 93(1-2), 202-209.

Syakti, A. D., Bouhroum, R., Hidayati, N. V., Koenawan, C. J., Boulkamh, A., Sulistyo, I., ... & Wong-Wah-Chung, P. (2017). Beach macro-litter monitoring and floating microplastic in coastal area of Indonesia. Buletin Marine Pollution,122(1–2), 217-225. doi: 10.1016/j.marpolbul.2017.06.046

Teuten, E. L., Saquing, J. M., Knappe, D. R. U., Barlaz, M. A., Jonsson, S., Bjorn, A., ... & Takada, H. (2009). Transport and release of chemicals from plastics to the environment and to wildlife. Philosophical Transactions of the Royal Society B Biological Sciences, 364, 2027–2045. doi: 10.1098/rstb.2008.0284

Universitas Udayana (UNUD) & Commonwealth Scientific and Industrial

Research Organisation (CSIRO). (2017). Sebaran distribusi sampah di seluruh pesisir Pulau Bali pada 2017. Laporan Riset. Bali (ID): UNUD dan CSIRO.

van der Meulen, M. D., Devriese, L., Lee, J., Maes, T., Van Dalfsen, J. A., Huvet, A., ... & Vethaak, A. D. (2015). Socio-economic impact of microplastics in the 2 Seas, Channel and France Manche Region: an initial risk assessment. MICRO Interreg project IVa. Mededeling ILVO, (177).

Waring, R. H., Harris, R. M., & Mitchell, S. C. (2018). Plastic contamination of the food chain: A threat to human health?. Maturitas, 115, 64–68. doi:10.1016/j.maturitas.2018.06.010

Widyawati, N. (2019). Komposisi mikroplastik pada saluran pencernaan ikan. skripsi. Bogor (ID): Institut Pertanian Bogor.

Widria, Y. (2019). Pemindangan, teknik pengolahan ikan yang memiliki potensi meningkatkan konsumsi ikan Nasional. Internet. [Diakses: 2020 Agt 18]. Jakarta(ID): KKP. Retrieved from: https://kkp.go.id/djpdspkp/bbp2hp/artikel/11443-pemindangan-teknik-pengolahan-ikan-yang-memiliki-potensi-meningkat kan-konsumsi-ikan-nasional

Wright, S. L. & Kelly, F.J. (2017). Plastic and human health: a micro issue?. Environmental Science Technology , 51(12), 6634–6647 doi: 10.1021/acs.est.7b00423

Yona, D., Maharani, M. D., Cordova, M. R., Elvania, Y., & Dharmawan, I. W. E. (2020). Analisis mikroplastik di insang dan saluran pencernaan ikan karang di tga pulau kecil dan terluar Papua, Indonesia: kajian awal. Jurnal Ilmu dan Teknologi Kelautan Tropis, 12(2), 495-505. doi: 10.29244/jitkt.v12i2.25971

Young, A. M., & Elliott, J. A. (2016). Characterization of microplastic and mesoplastic bebris insediments from Kamilo Beach and Kahuku Beach, Hawai’I. Marine Pollution Bulletin, 113, 477–482. doi: 10.1016/j.marpolbul.2016.11. 009.

Zimmer, A. C. (2008). Chemical pollutants: children at risk. Atelier Editions. Paris(FR): Atelier.




DOI: http://dx.doi.org/10.15578/jpbkp.v16i2.772

Article Metrics

Abstract view : 1829 times
PDF - 960 times

Refbacks

  • There are currently no refbacks.


JPBKP adalah Jurnal Ilmiah yang terindeks :


Creative Commons License

ISSN : 1907-9133(print), ISSN : 2406-9264(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.