Skrining dan Identifikasi Bakteri Pembentuk Histamin yang Diisolasi dari Tuna, Tongkol, dan Cakalang Segar di Wilayah Jawa Barat, DKI Jakarta, dan Banten

Novalia Rachmawati, Radestya Triwibowo

Abstract


Tuna, tongkol, cakalang (TTC) merupakan komoditas perikanan bernilai ekonomis penting yang disukai oleh banyak konsumen di Indonesia. Namun demikian, distribusi, penanganan, dan pengolahan komoditas ini masih banyak mengalami kendala, di antaranya kontaminasi bakteri pembentuk histamin (BPH) yang dapat menyebabkan akumulasi histamin dan menimbulkan kerugian kesehatan pada konsumen. Penelitian ini bertujuan untuk mengidentifikasi BPH dari komoditas TTC segar yang dijual di pasar domestik, mengevaluasi profilnya, serta mengkarakterisasi kemampuan BPH tersebut dalam menghasilkan histamin. Sebanyak 93 sampel TTC diperoleh dari TPI, pasar tradisional, dan pasar modern di wilayah Jawa Barat, DKI Jakarta, dan Banten. Dari 318 isolat presumtif BPH yang ditemukan, sebanyak 59 isolat (19%) terkonfirmasi positif gen hdc dan di antaranya sebanyak 43 isolat dikategorikan sebagai BPH prolifik. Hasil sekuensing 16S rDNA menunjukkan sebanyak 30 dari 43 isolat BPH prolifik (69,8%) adalah Morganella morganii. Selain M. morganii, isolat lain yang ditemukan dari semua jenis ikan yang diamati adalah Photobacterium damselae (6,9%), keduanya merupakan BPH mesofilik. Isolat mesofilik lain yang teridentifikasi dari sampel TTC berasal dari genus Klebsiella (4,7%), Proteus (4,7%), Raoultella (4,7%), Shewanella (2,3%), dan Vibrio (6,9%). Keberadaan BPH prolifik ini mengindikasikan adanya potensi akumulasi histamin pada produk akhir TTC apabila dalam penanganan dan pengolahannya tidak menerapkan sistem rantai dingin dengan benar.

Title: Screening and Identification of Histamine Producing Bacteria Isolated from Fresh Tuna and Tuna-like from West Java, DKI Jakarta, and Banten Areas

Tuna and tuna-like fish are economically important and popular amongst Indonesian consumers. However, the distribution, handling, and processing of these commodities are still facing many problems, including contamination of histamine producing bacteria (HPB) which may lead to histamine accumulation and cause human adverse health effects. This study aimed to identify HPB from fresh tuna and tuna-like fish sold in domestic markets in Indonesia, evaluate their profile, and characterize their ability to produce histamine. A number of 93 fish samples were obtained from fish landing, traditional and modern fish markets in West Java, DKI Jakarta, and Banten. Of 318 presumptive HPB identified from the sample, 59 isolates (19%) were confirmed as hdc-gene positive with 43 isolates were categorized as prolific HPB. Bacterial identification with 16S rDNA sequencing identified 30 out of 43 (69.8%) prolific HPB as Morganella morganii. Besides M. morganii, another mesophilic HPB identified from all different type of fish was Photobacterium damselae (6.9%), while the remaining mesophilic HPB were identified from genus Klebsiella (4.7%), Proteus (4.7%), Raoultella (4.7%), Shewanella (2.3%), and Vibrio (6.9%). The presence of prolific HPB in the samples suggested that histamine accumulation in the final product is possible if cold-chain system is not properly applied during fish handling and processing.


Keywords


bakteri pembentuk histamin; tuna; tongkol; cakalang; pasar domestik

Full Text:

PDF

References


Antara. (2020). Keracunan Ikan Tongkol, Tiga Orang Masih Dirawat. Jawapos. Retrieved from https://www.jawapos.com/jpg-today/12/03/2020/keracunan-ikan-tongkol-tiga-orang-masih-dirawat/

Björnsdóttir-Butler, K., Bolton, G. E., Jaykus, L.-A., McClellan-Green, P. D., & Green, D. P. (2010). Development of molecular-based methods for determination of high histamine producing bacteria in fish. International Journal of Food Microbiology, 139(3), 161-167. doi:10.1016/j.ijfoodmicro.2010.03.017

Bjornsdottir-Butler, K., Bowers, J. C., & Benner, R. A., Jr. (2015). Prevalence and characterization of high histamine-producing bacteria in Gulf of Mexico fish species. Journal of Food Protection, 78(7), 1335-1342. doi:10.4315/0362-028x.Jfp-15-012

Bjornsdottir-Butler, K., Jones, J. L., Benner, R., & Burkhardt III, W. (2011). Development of a real-time PCR assay with an internal amplification control for detection of Gram-negative histamine-producing bacteria in fish. Food Microbiology, 28(3), 356-363. doi:10.1016/j.fm.2010.06.013

Bjornsdottir, K. (2009). Detection and control of histamine-producing bacteria in fish. (Disertasi). North Carolina State University, Ann Arbor.

Bjornsdottir, K., Bolton, G. E., McClellan-Green, P. D., Jaykus, L. A., & Green, D. P. (2009). Detection of Gram-negative histamine-producing bacteria in fish: a comparative study. Journal of Food Protection, 72(9), 1987-1991. doi:10.4315/0362-028X-72.9.1987

Chendaki, B. (2020). Polisi Usut Keracunan Ikan Tongkol BPNT Pemalang. Retrieved from https://www.puskapik.com/10690/berita/polisi-usut-keracunan-ikan-tongkol-bpnt-pemalang/

Chiang, Y. C., Yang, C. Y., Li, C., Ho, Y. C., Lin, C. K., & Tsen, H. Y. (2006). Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp. and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization. International Journal of Food Microbiology, 107(2), 131-137. doi:10.1016/j.ijfoodmicro.2005.04.028

Cox, K. L., Devanarayan, V., Kriauciunas, A., Manetta, J., Montrose, C., & Sittampalam, S. (2004). Immunoassay Methods. In G. S. Sittampalam, N. P. Coussens, H. Nelson, M. Arkin, D. Auld, C. Austin, B. Bejcek, M. Glicksman, J. Inglese, P. W. Iversen, Z. Li, J. McGee, O. McManus, L. Minor, A. Napper, J. M. Peltier, T. Riss, J. O. Joseph Trask, & J. Weidner (Eds.), Assay Guidance Manual (Internet). Bethesda, Maryland: Eli Lilly & Company and the National Center for Advancing Translational Sciences.

Dalgaard, P., Madsen, H. L., Samieian, N., & Emborg, J. (2006). Biogenic amine formation and microbial spoilage in chilled garfish (Belone belone belone) – effect of modified atmosphere packaging and previous frozen storage. Journal of Applied Microbiology, 101(1), 80-95. doi:10.1111/j.1365-2672.2006.02905.x

Emborg, J., & Dalgaard, P. (2008). Modelling the effect of temperature, carbon dioxide, water activity and pH on growth and histamine formation by Morganella psychrotolerans. International Journal of Food Microbiology, 128(2), 226-233. doi:10.1016/j.ijfoodmicro.2008.08.016

Emborg, J., Dalgaard, P., Kjølby, A., Sørensen, N. D., & Larsen, I. K. (2008). Results of biogenic amine concentrations and microflora in seafood causing histamine fish poisoning (HFP) (3.4.2 - 2008). http://seafoodplus.org/project/images/seafoodplus_report

_report_3.4.2_-_jette_emborg_et_al.pdf

Fatuni, Y. S., Suwandi, R., & Jacoeb, A. M. (2014). Identifikasi kadar histamin dan bakteri pembentuk histamin dari pindang badeng tongkol. Jurnal Pengolahan Hasil Perikanan Indonesia, 17(2), 112-118.

Fletcher, G. C., Summers, G., Winchester, R. V., & Wong, R. J. (1995). Histamine and Histidine in New Zealand Marine Fish and Shellfish Species, Particularly Kahawai (Arripis trutta). Journal of Aquatic Food Product Technology, 4(2), 53-74. doi:10.1300/J030v04n02_04

Food and Agriculture Organization of the United Nations, & World Health Organization (FAO & WHO). (2012). Public health risks of histamine and other biogenic amines from fish and fishery products. Rome: FAO and WHO.

Gardini, F., Özogul, Y., Suzzi, G., Tabanelli, G., & Özogul, F. (2016). Technological Factors Affecting Biogenic Amine Content in Foods: A Review. Frontiers in Microbiology, 7, 1218-1218. doi:10.3389/fmicb.2016.01218

Hwang, C. C., Tseng, P. H., Lee, Y. C., Kung, H. F., Huang, C. Y., Chen, H. C., & Tsai, Y. H. (2019). Determination of histamine in Japanese Spanish Mackerel (Scomberomorus niphonius) meat implicated in a foodborne poisoning. Journal of Food Protection, 82(10), 1643-1649. doi:10.4315/0362-028x.Jfp-19-111

Indriati, N., Rispayeni, & Heruwati, E. S. (2006). Studi bakteri pembentuk histamin pada ikan kembung peda selama proses pengolahan]. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 1(2), 117-122. doi:10.15578/jpbkp.v1i2.394

International Commission on Microbiological Specifications for Foods (ICMSF). (2005). Microbiology of Foods 6: Microbial Ecology of Food Commodities (2nd ed.). New York, USA: Kluwer Academic/Plenum Publishers.

Kanki, M., Yoda, T., Tsukamoto, T., & Baba, E. (2007). Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Applied and Environmental Microbiology, 73(5), 1467-1473. doi:10.1128/aem.01907-06

Kementerian Kelautan dan Perikanan. (2016). Laporan Kinerja Kementerian Kelautan dan Perikanan 2016. Jakarta.

Kim, S., Field, K., Morrissey, M., Price, R., Wei, C., & An, H. (2001). Source and identification of histamine-producing bacteria from fresh and temperature-abused albacore. Journal of Food Protection, 64(7), 1035-1044. doi:10.4315/0362-028X-64.7.1035

Kim, S. H. (2001). Identification of bacteria crucial to histamine formation and monitoring their occurence and histamine accumulation in scombroid fish. Disertasi. Oregon State University.

Kimura, B., Konagaya, Y., & Fujii, T. (2001). Histamine formation by Tetragenococcus muriaticus, a halophilic lactic acid bacterium isolated from fish sauce. International Journal of Food Microbiology, 70(1), 71-77. doi:10.1016/S0168-1605(01)00514-1

Klausen, N. K., & Huss, H. H. (1987). Growth and histamine production by Morganella morganii under various temperature conditions. International Journal of Food Microbiology, 5(2), 147-156. doi:10.1016/0168-1605(87)90032-8

Lee, Y. C., Huang, T. C., Lin, C. S., Lin, C. M., & Tsai, Y. H. (2012). Determination of histamine and histamine-forming bacteria in Striped marlin fillets (Tetrapturus audax) implicated in a food-borne poisoning. Toxicon, 60(2), 161-162. doi:10.1016/j.toxicon.2012.04.133

Lehane, L., & Olley, J. (2000). Histamine fish poisoning revisited. International Journal of Food Microbiology, 58(1–2), 1-37. doi:10.1016/S0168-1605(00)00296-8

Niven, C. F., Jeffrey, M. B., & Corlett, D. A. (1981). Differential plating medium for quantitative detection of histamine producing bacteria. Applied and Environmental Microbiology, 41(1), 321-322.

Nucleotide. (1988). Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Internet. Available from: https://www.ncbi.nlm.nih.gov/nucleotide

Nurilmala, M., Saputri, N. N., Abdullah, A., Nurjanah, N., Yusfiandayani, R., & Sondita, M. F. A. (2020). Detection of histamine-producing bacteria on tuna species using histidine decarboxylase (hdc) and 16S rRNA. Squalen Bulletin of Marine and Fisheries Postharvest and Biotechnology, 15(30), 131-139. doi:http://dx.doi.org/10.15578/squalen.v15i3.445

Omura, Y., Price, R. J., & Olcott, H. S. (1978). Histamine - forming bacteria isolated from spoiled skipjack tuna and jack mackerel. Journal of Food Science, 43(6), 1779-1781. doi:10.1111/j.1365-2621.1978.tb07412.x

Pusat Data Statistik dan Informasi KKP (PUSDATIN KKP). (2018). Kelautan dan Perikanan dalam Angka tahun 2018. Jakarta.

Rachmawati, N. (2019). Assessing the risk of histamine from the Indonesian salted-boiled fish (pindang). (Disertasi). University of Tasmania, Hobart, Tasmania.

Raharjo, D. B. (2020). Puluhan Warga Batang Diduga Keracunan Ikan Tongkol Bantuan Kemensos. Retrieved from https://jateng.suara.com/read/2020/06/18/153943/puluhan-warga-batang-diduga-keracunan-ikan-tongkol-bantuan-kemensos

Supriadi, B. (2020). Korban Keracunan Ikan Tongkol di Jember Bertambah Lagi, Kini Jadi 350 Orang [Victims of fish poisoning in Jember increased, now accounted for 350 people]. Kompas. https://regional.kompas.com/read/2020/01/03/11472551/korban-keracunan-ikan-tongkol-di-jember-bertambah-lagi-kini-jadi-350-orang

Suryono. (2020). Ratusan Orang di Pemalang Diduga Keracunan Ikan Tongkol. https://news.okezone.com/read/2020/07/21/519/2249499/ratusan-orang-di-pemalang-diduga-keracunan-ikan-tongkol

Takahashi, H., Kimura, B., Yoshikawa, M., & Fujii, T. (2003). Cloning and sequencing of the histidine decarboxylase genes of gram-negative, histamine-producing bacteria and their application in detection and identification of these organisms in fish. Applied and Environmental Microbiology, 69(5), 2568-2579. doi:10.1128/aem.69.5.2568-2579.2003

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi:10.1093/molbev/mst197

Taylor, S. L. (1986). Histamine food poisoning - Toxicology and clinical aspects. CRC Critical Reviews in Toxicology, 17(2), 91-128. doi:10.3109/10408448609023767

Torido, Y., Ohshima, C., Takahashi, H., Miya, S., Iwakawa, A., Kuda, T., & Kimura, B. (2014). Distribution of psychrophilic and mesophilic histamine-producing bacteria in retailed fish in Japan. Food Control, 46(0), 338-342. doi:10.1016/j.foodcont.2014.05.045

Trevisani, M., Mancusi, R., Cecchini, M., Costanza, C., & Prearo, M. (2017). Detection and characterization of histamine-producing strains of Photobacterium damselae subsp. damselae isolated from mullets. Veterinary sciences, 4(2), 31. doi:10.3390/vetsci4020031

United States Department of Health Human Services, Food Drug Administration (FDA), & Center for Food Safety Applied Nutrition (CFSAN). (2011). Fish and fishery products hazards and controls guidance (Fourth ed.). Gainsville: Florida Sea Grant.

Virgantari, F., Daryanto, A., Harianto, & Kuntjoro, S. U. (2011). Dinamika konsumsi produk perikanan di indonesia. Ekologia: Jurnal Ilmiah Ilmu Dasar dan Lingkungan Hidup, 11(2), 22-30.

Visciano, P., Schirone, M., & Paparella, A. (2020). An overview of histamine and other biogenic amines in fish and fish products. Foods, 9(12). doi:10.3390/foods9121795

Visciano, P., Schirone, M., Tofalo, R., & Suzzi, G. (2012). Biogenic amines in raw and processed seafood. Frontiers in Microbiology, 3(188), 1-10. doi:10.3389/fmicb.2012.00188

Visciano, P., Schirone, M., Tofalo, R., & Suzzi, G. (2014). Histamine poisoning and control measures in fish and fishery products. Frontiers in Microbiology, 5, 500. doi:10.3389/fmicb.2014.00500

Wahyuni, S. (2011). Histamin Tuna (Thunnus sp) dan Identifikasi Bakteri Pembentuknya pada Kondisi Suhu Penyimpanan Standar. Skripsi. Institut Pertanian Bogor, Bogor.

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703. doi:10.1128/jb.173.2.697-703.1991

Widria, Y. (2018). Ekspor Tuna Cakalang Tongkol Indonesia 6 Tahun Terakhir (2012-2017), Kondisi dan Harapan. https://kkp.go.id/djpdspkp/artikel/2746-ekspor-tuna-cakalang-tongkol-indonesia-6-tahun-terakhir-2012-2017-kondisi-dan-harapan

Wodi, S. I. M. (2015). Profil protein larut air dan histamin serta identifikasi bakteri penghasil histidin dekarboksilase pada tuna mata besar (Thunnus obesus). Thesis. Institut Pertanian Bogor, Bogor.

Wuryandani, D., & Meilani, H. (2011). Kebijakan pengelolaan sumber daya perikanan laut untuk menunjang ketahanan pangan di Indonesia. Jurnal Ekonomi & Kebijakan Publik, 2(1), 395-422.

Yoshinaga, D. H., & Frank, H. A. (1982). Histamine producing bacteria in decomposing skipjack tuna (Katsuwonus pelamis). Applied and Environmental Microbiology, 44(2), 447-452.




DOI: http://dx.doi.org/10.15578/jpbkp.v16i2.771

Article Metrics

Abstract view : 513 times
PDF - 301 times

Refbacks

  • There are currently no refbacks.


JPBKP adalah Jurnal Ilmiah yang terindeks :


Creative Commons License

ISSN : 1907-9133(print), ISSN : 2406-9264(online)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.