PENGARUH PERLAKUAN ALKALI DAN VOLUME LARUTAN PENGEKSTRAK TERHADAP MUTU KARAGINAN DARI RUMPUT LAUT Eucheuma cottonii
Th. Dwi Suryaningrum, Murdinah dan Mei Dwi Erlina

ABSTRAK
Penelitian ekstraksi rumput laut Eucheuma cottonii menjadi karaginan kertas telah dilakukan. Penelitian dilaksanakan dengan rancangan acak lengkap dengan variasi perlakuan bahan baku yaitu rumput laut yang diberi perlakuan KOH 5% dan 8% dan volume larutan pengekstrak 60 kali dan 50 kali dari bobot rumput laut kering. Percobaan dilakukan dengan 3 kali ulangan. Ekstraksi dilakukan dengan menggunakan larutan KCl 0,1% selama 3 jam pada suhu 90-95°C. Pengamatan dilakukan terhadap rendemen karaginan, sifat kimia (kadar air, abu, abu tak larut asam, sulfat dan 3,6-anhydrogalaktosa) dan sifat fisik (kekuatan gel dan keketelitian) karaginan yang dihasilkan. Hasil penelitian menunjukkan rumput laut yang diberi perlakuan KOH 5% menghasilkan rendemen dan keketelitian larutan karaginan yang lebih baik sedangkan perlakuan KOH 8% menghasilkan karaginan yang mempunyai kadar air, kadar abu dan kadar abu tak larut asam yang lebih baik. Perlakuan terhadap bahan baku rumput laut dan volume larutan pengekstrak tidak berpengaruh nyata terhadap kadar sulfat dan kekuatan gel yang dihasilkan. Jika rendemen dan kekuatan gel diprioritaskan maka dalam ekstraksi karaginan dapat disarankan menggunakan rumput laut yang telah diberi perlakuan KOH 5% dan dиеkstraksi dengan larutan KCl 0,1% selama 3 jam dengan volume larutan pengekstrak 60 kali bobot rumput laut kering.

ABSTRACT: The effect of alkali treatment and volume of extraction water on the quality of carrageenan from Eucheuma cottonii. By: Th. Dwi Suryaningrum, Murdinah and Mei Dwi Erlina

Study on the carrageenan extraction from Eucheuma cottonii with alkali treatment and variation of the volume of extraction water has been conducted. Completely randomized experimental design has been applied to analyze the data. Treatments observed in this study were KOH concentrations (5% and 8%) and water proportion (50 and 60 times of dry seaweed weight). The experiment was carried out in three replicates. Extraction was done by applying 0.1% KCL solution for 3 hours at 90-95°C. Yield of carrageenan, chemical parameters (moisture content, ash, acid insoluble ash, sulphate and 3,6-anhydrogalactose) and physical parameters (gel strength and viscosity) were investigated. The result showed that seaweed treated with 5% KOH produced carrageenan with better yield and viscosity than that treated with 8% KOH but seaweed treated with 8% KOH produced carrageenan with higher moisture and ash content. Alkali treatment and water proportion did not affect sulphate content and gel strength of the extracted carrageenan. If yield and gel strength were intended to be the main factors of carrageenan quality, it is suggested that seaweed has to be treated with 5% KOH and extracted with 0.1% KCl for 3 hours at 90-95°C using extraction water 60 times of the weight of dry seaweed.

KEYWORDS : Eucheuma cottonii, physico-chemical characteristics of carrageenan.

PENDAHULUAN
Karaginan merupakan hidrokoloid hasil ekstraksi dari rumput laut merah yang merupakan senyawa polysakarida kompleks. Senyawa tersebut dibangun oleh sejumlah unit galaktosa dan 3,6-anhydrogalaktosa baik yang mengandung sulfat maupun tidak dengan ikatan alpha 1,3-D-galaktosa dan beta 1,4-3,6-anhydrogalaktosa (Chaplin, 2003). Senyawa ini banyak digunakan dalam industri pangan karena kemampuannya untuk memodifikasi tekstur, cita rasa yang berhubungan dengan kelembutan dan kerenyahan, daya awet sihat emulsi produk serta mampu menstabilkan protein susu karena adanya gugus ester sulfat (Sanderson, 1981). Kebutuhan karaginan juga meningkat paling tidak 5-7% setiap tahunnya sejalan dengan kemajuan dalam bidang industri pangan, farmasi dan sanitasi karena sifatnya yang sangat unik yang tidak dapat digantikan oleh gum lainnya (Anonymous, 1996).

*) Peneliti pada Pusat Riset Pengolahan Produk dan Sosial Ekonomi Kelautan dan Perikanan

Masalah utama yang menjadi kendala dalam pengolahan rumput laut menjadi karaginan adalah modal yang besar untuk investasinya. Dalam penelitian ini pengolahan karaginan dicoba dengan menggunakan proses seperti pada pengolahan agar-agar kertas yang telah dikembangkan oleh Pusat Riset Pengolahan Produk dan Sosial Ekonomi Kelautan dan Perikanan. Diharapkan jika metode ini dapat diterapkan pada pengolahan karaginan maka akan diperoleh teknologi pengolahan karaginan yang lebih mudah dan murah. Dilain pihak potensi sumberdaya dan kebutuhan karaginan yang tersier meningkat, membuat peluang untuk membangun industri karaginan di Indonesia cukup propektif. Saat ini Indonesia masih tercatat sebagai negara produsen rumput laut terbesar kedua setelah Filipina. Sedangkan Filipina sendiri telah menguasai produksi karaginan dunia sebesar 43% dari total produksi karaginan yang ada (Anonymous, 2000). Melihat potensi yang ada seharusnya Indonesia dapat tercatat sebagai negara produsen karaginan seperti halnya Filipina.

Masalah lain yang dihadapi adalah rendahnya kualitas rumput laut penghasil karaginan terutama rendemen dan kekuatan gel yang dihasilkan. Untuk meningkatkan rendemen dan kekuatan gel, dalam penelitian ini digunakan perlakuan alkali panas terhadap bahan baku rumput laut. Perlakuan alkali bertujuan untuk mengkatalisis hidrolisis gugus 6-sulfat yang bersifat hidroflik dari unit monomer karaginan dan membentuk 3,6-anhydrogalaktoza yang bersifat hidrofobik sehingga dapat meningkatkan gel karaginan yang dihasilkan (Stanley, 1987). Sedangkan menurut Neish (1989), perlakuan alkali bertujuan untuk meningkatkan titik leleh karaginan di atas suhu pemasakannya, sekaligus memecahkan warna rumput laut sehingga dihasilkan karaginan yang mempunyai kekuatan gel yang tinggi dan warna karaginan yang lebih putih.

BAHAN DAN METODE

Persiapan Bahan dan Peralatan

Bahan yang digunakan dalam penelitian ini adalah rumput laut jenis *Eucheuma cottonii* yang diperoleh dari petani rumput laut di P. Panjang Kab. Serang, Banten. Rumput laut kemudian direbus dengan larutan KOH dengan konsentrasi 6% dan 8% dengan volume larutan perebus 5 kali bobot rumput laut kering dan lama perebusan 6 jam. Rumput laut kemudian dicuci berulang-ulang sehingga netral kembali dan dijemur hingga kering. Rumput laut kering yang sudah diperlakukan dengan alkali kemudian digunakan sebagai bahan untuk penelitian ekstraksi karaginan. Sedangkan bahan pembantu yang digunakan untuk ekstraksi karaginan adalah KOH dan KCL teknis.

Peralatan yang digunakan untuk mengekstraksi karaginan adalah *dandang double unit* untuk perebusan dengan kapasitas 200 liter, pengaduk kayu, saringan bergetar, pan penjelad, alat pengiris gel agar, kain pembungkus ukuran 40 x 60 cm, seperangkan alat press, para-pari penjemur, dan mesin penepung.

Penelitian Pendahuluan

Penelitian pendahuluan dilakukan untuk mencari konsentrasi KCl serta lama waktu perebusan pada skala laboratorium. Konsentrasi KCl yang digunakan dalam percobaan ini adalah 0,1%, 0,2% dan 0,3%, dengan lama ekstraksi mengikuti lama ekstraksi karaginan yang ada di lapangan yaitu 6 jam dengan volume larutan pelegestrak 50 kali bobot rumput laut. Pengamatan dilakukan terhadap rendemen yang dihasilkan. Konsentrasi KCl optimum yang diperoleh digunakan untuk mencari lama waktu perebusan, yaitu 3, 6 dan 9 jam dengan volume larutan pelegestrak 50 kali bobot rumput laut yang digunakan. Pengamatan dilakukan terhadap rendemen karaginan sedangkan pengukuran kekuatan gel karaginan dilakukan terhadap perluasan yang menghasilkan rendemen terbaik. Waktu dan konsentrasi KCl terbaik yang diperoleh digunakan untuk percobaan selanjutnya.

Penelitian Lanjutan

Percobaan ini merupakan lanjutan yang didasarkan dari penelitian pendahuluan. Penelitian dirancang dengan menggunakan rancangan acak lengkap dengan
variasi perlakuan bahan baku yaitu rumput laut yang diberi perlakuan KOH 6% dan 8% serta volume larutan pengekstrak 50 kali dan 50 kali bobot rumput laut kering. Percobaan dilakukan dengan 3 kali ulangan.

Ekstraksi rumput laut dilakukan dengan cara sebagai berikut: 1 kg rumput laut kering yang telah diberi perlakuan KOH 6% dan 8% diekstrak dengan menggunakan larutan KCl dengan konsentrasi terpilih dengan volume larutan pengekstrak 50 dan 60 kali bobot rumput laut. Ekstraksi dilakukan pada suhu 90-95°C selama 3 jam. Setelah proses ekstraksi selesai rumput laut disaring dengan menggunakan alat saringan bergetar. Filtrat yang diperoleh ditampung dalam pan penyendal dan dibiarakan semalaman untuk pembentukan gel. Gel karaginan kemudian diiris dengan menggunakan alat pemotong gel dengan ketebalan 0,8 cm sehingga membentuk lembaran. Lembaran gel karaginan dibungkus dengan menggunakan kain pembungkus kemudian dipisah dengan menggunakan balok yang berat dari semen. Pengepresan dilakukan selama semalaman dengan penambahan beban secara bertahap sehingga diperoleh lembaran gel karaginan yang cukup tipis dengan ketebalan sekitar 0,5-0,6 cm. Gel karaginan kemudian dijernih beserta kainnya sampai kering sehingga membentuk lembaran seperti kertas tipis. Karaginan kertas kemudian dilepaskan dari kainnya, kemudian dipotong-potong dan digiling sehingga menjadi tepung karaginan.

Parameter yang Diamati

HASIL DAN BAHASAN

Penelitian Pendahuluan

Rendemen karaginan hasil ekstraksi dengan menggunakan larutan KCl 0,1, 0,2 dan 0,3 % dapat dilihat pada Gambar 1. Rendemen karaginan tertinggi diperoleh dari rumput laut yang diekstrak dengan larutan KCl 0,1% yaitu sebesar 57,04 %. Rendemen ini jauh lebih tinggi dibandingkan dengan rendemen karaginan yang diekstrak dengan menggunakan larutan KCl 0,2% dan 0,3%. Hal ini disebabkan karena semakin tinggi konsentrasi KCl yang digunakan semakin cepat filtrat karaginan membentuk gel. Menurut Chaplin (2003) adanya ion K⁺ tidak saja

Gambar 1. Rendemen karaginan yang diekstrak dengan berbagai konsentrasi KCl, waktu ekstraksi 6 jam, volume pengekstrak 50x bobot rumput laut kering

Figure 1. Yield of carrageenan extracted by various concentration of KCl, extraction time 6 hours, extraction water 50x dry seaweed weight
Pembantu pembentukan helix rangkap tetapi juga dalam pembentukan agregat antar helix yang membentuk jaringan 3 dimensi yang menyebabkan pembentukan gel. Kecepatan pembentukan gel ini berakibat sulitnya proses penyanyangan, sehingga filtrat yang diperoleh semakin menurun yang berpengaruh terhadap rendemen yang dihasilkan.

Oleh karena itu konsentrasi KCl yang digunakan untuk penelitian selanjutnya adalah 0.1%. Larutan pengekstrak KCl 0.1% ini selanjutnya digunakan untuk mencari waktu ekstraksi karaginan yang optimum.

Gambar 2 menunjukkan rendemen karaginan yang diekstrak dengan KCl 0.1% dengan waktu ekstraksi yang berbeda. Semakin lama waktu perebusan semakin menurun rendemen karaginan yang dihasilkan. Hal ini disebabkan karena semakin lama waktu ekstraksi semakin banyak penguapan yang menyebabkan filtrat semakin kental. Semakin kental filtrat yang diperoleh semakin cepat pulih filtrat membentuk gel sehingga sukuk untuk disaring. Hal ini berakibat pada menurunnya rendemen karaginan yang dihasilkan. Oleh karena itu dalam penelitian selanjutnya digunakan larutan ekstraksi KCl 0.1% dan waktu ekstraksi 3 jam. Adapun kekuatan gel rata-rata karaginan yang diekstrak dengan larutan KCl 0.1% dan waktu ekstraksi 3 jam adalah sebesar 550 g/cm³.

Penelitian Lanjutan

Pada penelitian lanjutan digunakan variabel bahan baku rumput laut yang telah direbus dengan KOH dengan konsentrasi 6% dan 8% dengan volume larutan pengekstrak 50 kali dan 60 kali bobot rumput laut kering. Ekstraksi dilakukan dengan larutan KCl 0.1% dan lama waktu ekstraksi 3 jam.

Rendemen Karaginan

Hasil analisis statistik menunjukkan bahwa perlakuan bahan mentah rumput laut dan volume larutan pengekstrak menghasilkan rendemen karaginan yang berbeda sangat nyata (P<0.01). Dari...
KOH 8% lebih kental dan lebih cepat membentuk gel dibandingkan dengan filtrat rumput laut yang diberi perlakuan KOH 6%. Disamping itu filtrat rumput laut yang diberi perlakuan KOH 8%, mempunyai titik gel dengan suhu yang lebih tinggi, sehubungan dengan titik gel turun larutan menjadi sangat kental. Pada penelitian ini penyaringan dilakukan dengan menggunakan saringan bergetar dimana proses penyaringannya berjalan agak lambat sehingga proses penyaringan belum selesai, filtrat sudah membentuk larutan yang sangat kental. Dengan demikian filtrat hasil penyaringan yang diperoleh dari rumput laut yang diberi perlakuan alkalai KOH 8% lebih sedikit dan berpengaruh terhadap penurunan rendemen yang dihasilkan. Pada perlakuan volume larutan peneagstrak, rendemen karaginan yang diekstrak dengan volume larutan peneagstrak 60 kali bobot rumput laut lebih tinggi dibandingkan dengan volume larutan peneagstrak 50 kali. Rendemen tersebut semakin berkurang bila diekstrak dari rumput laut yang diberi perlakuan KOH 8% dengan volume larutan peneagstrak 50 kali. Hal ini karena filtrat yang diperoleh sangat kental dan pada suhu tinggi (55°C) sudah membentuk gel dibandingkan dengan karaginan yang diekstrak dengan menggunakan volume larutan peneagstrak 60 kali. Ekstraksi dengan menggunakan volume 60 kali memungkinkan semakin banyak air yang terserap, sehingga dingding sel semakin mengembang dan memudahkan karaginan keluar dari dingding sel.

Semakin banyak volume larutan peneagstrak semakin banyak air yang terdispersi yang menyebabkan proses pembentukan gel terganggu. Banyaknya air yang terdispersi akan menyebabkan susunan molekul karaginan masih dalam bentuk sol tidak dalam bentuk tiga demensi atau struktur helik rangkap yang merupakan fenomena pembentukan gel (Chapman dan Chapman, 1980). Kesadaran ini sangat membantu dalam proses penyaringan, walaupun suhu filtrat telah turun filtrat masih dalam bentuk cair yang mudah disaring sehingga berpengaruh pada meningkatnya rendemen karaginan yang dihasilkan.

Dalam proses pengolahan karaginan penyaringan merupakan faktor kritis yang menentukan tingkat mutu karaginan yang dihasilkan (Stanley, 1987). Semakin tinggi teknologi proses penyaringan yang digunakan, akan semakin tinggi rendemen dan mutu karaginan yang dihasilkan. Dalam industri pengolahan karaginan biasanya penyaringan dilakukan dengan menggunakan filter press dengan kap saring yang ukuran meshnya sangat kecil. Hal ini dimaksudkan agar filtrat yang terserap semakin banyak dan karaginan yang dihasilkan tidak tercampur dengan selulose atau kotoran lain yang dapat mengganggu pembertukan gel (Chapman dan Chapman, 1980). Uji Duncan menunjukkan bahwa rendemen karaginan yang diperoleh dari bahan mentah rumput laut yang telah diberi perlakuan KOH 6% dan volume larutan peneagstrak 60 kali menghasilkan rendemen yang paling tinggi dan berbeda nyata dengan perlakuan
lainnya. Sedangkan perlakuan rumput laut yang diberi perakuan KOH 8% dan volume larutan pengekstrak 50 kali menghasilkan rendemen yang paling rendah.

Rendemen karaginan pada percobaan ini berkisar antara 27.55-49.03% (bk). Bila dibandingkan dengan rendemen rumput laut yang belum mendapatkan perakuan alkali yang hanya berkisar antara 15-25%, rendemen yang diperoleh Ini lebih tinggi. Rumput laut yang telah diberi perlakuan alkali mempunyai sifat gel yang lebih baik bila dibandingkan dengan rumput laut yang tidak diberi perlakuan alkali.

Sifat Kimia Karaginan

Kadar air

Rata-rata kadar air tepung karaginan yang diperoleh dalam penelitian ini berkisar antara 17,51-27,59%. Hasil analisis statistik menunjukkan kadar air karaginan yang diekstrak dari rumput laut yang diberi perakuan KOH 6% berbeda nyata (P<0,01) bila dibandingkan dengan karaginan yang diekstrak dari rumput laut yang diberi perakuan KOH 8%. Kadar air karaginan yang diekstrak dari rumput laut yang diberi perakuan KOH 6% lebih tinggi, baik yang diekstrak dengan volume larutan pengekstrak 50 kali maupun 60 kali (Gambar 4). Hal ini disebabkan dengan semakin tinggi konsentrasi alkali yang digunakan semakin banyak gugus sulfat yang dapat mengikat air yang hilang. Karaginan yang dihasilkan dari rumput laut yang diberi perakuan KOH 8% kadar sulfatnya lebih rendah, sehingga tidak banyak mengikat air bila dibandingkan dengan karaginan yang diekstraksi dari rumput laut yang diberi perakuan KOH 6%. Oleh karena itu dengan waktu pengeringan yang sama maka karaginan yang diekstraksi dari rumput laut yang diberi perakuan KOH 8% lebih cepat kering dibandingkan dengan karaginan yang diekstraksi dari rumput laut yang diberi perakuan alkali 6%. Demikian juga penggunaan volume larutan pengekstrak 60 kali menyebabkan lebih banyak air yang terdispersi dalam larutan karaginan. Kondisi tersebut menyebabkan pengeringan agak terhambat, sehingga dengan waktu pengeringan yang sama maka kadar air karaginan yang diekstraksi dengan volume pengekstrak 60 kali lebih tinggi bila dibandingkan dengan kadar air karaginan yang diekstraksi dengan volume pengekstrak 50 kali.

Kadar air karaginan yang diperoleh dan penelitian ini masih cukup tinggi bila dibandingkan dengan syarat tepung karaginan yang dikeluarkan oleh FAO yaitu sebesar 12% (Anonymous, 1978). Dalam penelitian ini proses pengeringan dilakukan dengan cara menjemur lembaran karaginan yang masih terbungkus dengan kain selama 3 hari pada cuaca yang cukup panas. Nampanya pengeringan karaginan selama 3 hari belum cukup untuk mengeraskan karaginan sesuai dengan tingkat kekerasan yang telah.

![Gambar 4. Kadar air karaginan dari perakuan konsentrasi KOH dan volume larutan pengekstrak yang berbetta](image-url)

Figure 4. Moisture content of carrageenan resulted from different concentration of KOH and volume of extraction water.
dianalkan yaitu 12%. Oleh karena itu pengeringan karaginan perlu diperpanjang waktu walaupun sehingga diperoleh tingkat kekeringan yang memenuhi standar.

Kadar abu

Pengaruh perlakuan alkali dan volume larutan pekestrak terhadap kadar abu karaginan dapat dilihat pada Gambar 6. Hasil analisis statistik menunjukkan bahwa kadar abu karaginan yang karaginan dalam penelitian ini berkisar antara 14,06-15,11% sedangkan uji kemurnian tepung karaginan yang disyaratkan oleh FAO adalah sebesar 15-40%.

Kadar abu tak larut asam

Kadar abu tak larut asam karaginan hasil penelitian ini berkisar antara 0,12-0,43%, kadar ini jauh di bawah standar maksimum tepung karaginan yang dikeluarkan oleh FAO yaitu sebesar 2%. Rendahnya
diekstrak dari rumput laut yang diberi perlakuan KOH 6% dan 8% jika diekstrak dengan volume larutan pekestrak 50 kali tidak berbeda nyata. Namun jika diekstrak dengan volume pekestrak 60 kali dengan perlakuan KOH 8%, menghasilkan kadar abu yang lebih rendah. Kadar abu pada karaginan dapat dikaitkan dengan kandungan sulfatnya. Terlihat bahwa karaginan yang diperoleh dari rumput laut yang telah diekstrak KOH 8% kadar abunya lebih rendah bila dibanding dengan perlakuan KOH 6%. Semakin besar kadar sulfat karaginan yang dihasilkan semakin besar pula kadar abunya. Hal ini karena pada proses pengabunan beberapa sulfat akan menguap menjadi SO3, dan lainnya akan menjadi mineral atau oksida yang tidak menguap selama pengabuan (Anonymous 1978).

Volume larutan pekestrak 60 kali menghasilkan karaginan dengan kadar abu yang lebih rendah dibandingkan dengan yang diekstraksikan dengan volume larutan pekestrak 50 kali. Kadar abu tepung kadar abu tak larut asam ini menunjukkan bahwa karaginan hasil ekstraksi rumput laut tidak terkontaminasi selama proses pengolahan. Hasil analisis statistik terhadap kadar abu tak larut asam karaginan menunjukkan bahwa perlakuan yang diberikan berpengaruh nyata terhadap kadar abu yang dihasilkan (P<0,05). Kadar abu tak larut asam yang diperoleh dari karaginan yang diekstraksi dari rumput laut yang diberi perlakuan KOH 6% dengan volume larutan pekestrak 50 kali adalah yang paling tinggi dan berbeda nyata dengan perlakuan lainnya. Sedangkan rumput laut yang diberi perlakuan KOH 8% dengan volume pekestrak 60 kali menghasilkan kadar abu tak larut asam yang paling rendah seperti terlihat pada Gambar 6.

Kadar sulfat

Perlakuan konsentrasi KOH dan volume larutan pekestrak terhadap kadar sulfat karaginan dapat dilihat pada Gambar 7. Hasil analisis statistik
Gambar 6. Kadar Abu Tak Larut Asam dari perlakuan konsentrasi KOH dan volume larutan pengekstrak yang berbeda

Figure 6. Acid insoluble ash content of carrageenan resulted from different concentration of KOH and volume of extraction water.

Gambar 7. Kandungan Sulfat karaginan dari perlakuan konsentrasi KOH dan volume larutan pengekstrak yang berbeda

Figure 7. Sulphate content of carrageenan resulted from different concentration of KOH and volume of extraction water.

Menunjukkan bahwa perlakuan yang diberikan tidak berpengaruh terhadap kandungan sulfat karaginan yang dihasilkan (P>0,05).

Rata-rata kandungan sulfat karaginan yang diekstrak dari rumput laut yang diberi perlakuan KOH 6% adalah 14,19%. Nilai ini sedikit lebih tinggi bila dibandingkan dengan kandungan sulfat yang diperoleh dari rumput laut yang diberi perlakuan KOH 8% yaitu sebesar 13,80%. Sedangkan rata-rata kandungan sulfat karaginan yang diekstrak dari rumput laut yang diberi perlakuan KOH 8% dengan volume larutan pengekstrak 50 kali adalah sebesar 13,65% dan
Gambar 8. Kandungan 3.6-anhydrogalaktosa dari perlakuan konsentrasi KOH dan volume larutan pengekstrak yang berbeda

Figure 8. 3.6-anhydrogalaktosa content of carrageenan resulted from different concentration of KOH and volume of extraction water

tidak berbeda dengan perlakuan volume larutan pengekstrak 60 kali yaitu sebesar 13,95%. Pada penelitian ini kandungan sulfat terendah diperoleh pada karaginan yang diekstrak dari rumput laut yang telah diberi perlakuan KOH 8% dan diekstrak menggunakan volume larutan pengekstrak 50 kali. Kandungan sulfat karaginan yang diperoleh pada penelitian ini sedikit di bawah standar kandungan sulfat karaginan yang dikeluarkan oleh FAO yaitu sebesar 15-40% (Anonymous, 1986).

3.6-anhydrogalaktosa

Rata-rata kandungan 3.6-anhydrogalaktosa karaginan yang diperoleh dari percobaan ini berkisar antara 34,82-38,74% seperti disajikan pada Gambar 8. Hasil analisis statistik menunjukkan bahwa perlakuan yang diberikan berpengaruh nyata pada kandungan 3.6-anhydrogalaktosa (P<0,05). Kandungan 3.6-anhydrogalaktosa pada karaginan yang diekstrak dari rumput laut yang telah diberi perlakuan KOH 6% dan volume larutan pengekstrak 60 kali paling rendah (34.82%) dan berbeda nyata dengan perlakuan lainnya. Sedangkan kandungan 3.6-anhydrogalaktosa karaginan yang diekstrak dari rumput laut yang diberi perlakuan KOH 8% dengan volume larutan pengekstrak 50 kali tidak berbeda nyata dengan yang diekstrak dari rumput laut yang diberi perlakuan KOH 8% baik dengan volume larutan pengekstrak 50 kali maupun 60 kali.

Rata-rata kandungan 3.6-anhydrogalaktosa karaginan yang diekstrak dari rumput laut yang diberi perlakuan KOH 8% adalah 37,36% tidak berbeda dengan rata-rata kandungan 3.6-anhydrogalaktosa karaginan yang diekstrak dari rumput laut yang diberi perlakuan KOH 6% yaitu sebesar 36,78%. Uji Duncan menunjukkan bahwa kandungan 3.6-anhydrogalaktosa karaginan hanya berbeda nyata pada perlakuan volume larutan pengekstrak 60 kali pada rumput laut yang diberi perlakuan KOH 6%. Pada perlakuan ini kandungan 3.6-anhydrogalaktosa paling rendah dibandingkan dengan yang lainnya yaitu sebesar 34,82%.

Sifat Fisik Karaginan

Kekuatan gel karaginan

Pengaruh perlakuan bahan baku dan volume larutan pengekstrak terhadap kekuatan gel karaginan yang dihasilkan dapat dilihat pada Gambar 9.

Hasil analisis statistik menunjukkan bahwa perlakuan yang diberikan tidak berpengaruh nyata terhadap kekuatan gel yang dihasilkan (P>0,05). Rumput laut yang diberi perlakuan KOH 6% mempunyai kekuatan gel yang berkisar antara 1,148-1,156 g/cm² sedangkan rumput laut yang diberi perlakuan KOH 8% sebesar 801-932 g/cm². Dalam proses perlakuan alkali pada rumput laut, interaksi

Penggunaan larutan KCL 0,1% untuk proses ekstraksi menyebabkan gel kappa-karaginan yang dihasilkan dari rumput laut Enteromorpha prolifera bersifat kaku (Anonymous, 2002), meskipun gel yang dihasilkan keras tetapi tidak bersifat elastis. Pada saat pengukuran dengan menggunakan curd meter yang diberi beban tertentu, gel mudah pecah dan nilai yang dihasilkan rendah. Kekuatan gel karaginan semakin menurun pada karaginan yang diekstraksi dari rumput laut yang diberi perlakuan alkali KOH 8% dengan volume larutan pegekstrak 50 kali. Hal ini mungkin disebabkan adanya fragmentation polisakarida selama proses ekstraksi. Karaginan yang diperoleh dari volume pegekstrak 50 kali mempunyai pH yang lebih tinggi, sehingga menghasilkan karaginan dengan bobot molekul yang lebih kecil.

Proses ekstraksi dengan alkali dalam penelitian ini mampu meningkatkan kekuatan gel karaginan yang dihasilkan sampai di atas 800 g/cm². Kekuatan gel karaginan di pasaran dikatakan baik apabila di atas 1,000 g/cm² (Anonymous, 2002). Dalam penelitian ini kekuatan gel karaginan dapat mencapai di atas 1,000 g/cm² apabila diekstraksi dari rumput laut yang diberi perlakuan KOH 6%. Namun demikian kekuatan gel ini jauh lebih tinggi dibandingkan dengan kekuatan gel karaginan hasil ekstraksi rumput laut tanpa perlakuan alkali yang dilakukan oleh peneliti lain. Hasil penelitian Murdinah et al. (2003) menunjukkan bahwa karaginan yang diekstraksi dengan soda abu 0,5% kemudian diendapkan dengan KCL 3% menghasilkan kekuatan gel sebesar 193 g/cm². Namun bila karaginan diekstraksi dengan NaOH kemudian diendapkan dengan iso propil alkohol menghasilkan kekuatan gel 242 g/cm².

Kekentalan

Kekentalan larutan karaginan yang diperoleh dari berbagai perlakuan dapat dilihat pada Gambar 10. Hasil analisis statistik menunjukkan bahwa perlakuan yang diberikan berpengaruhi nyata (P<0,05) terhadap kekentalan larutan karaginan. Larutan karaginan yang diperoleh dari bahan rumput laut yang diberi perlakuan alkali KOH 6% lebih kental bila dibandingkan dengan yang diperoleh dari perlakuan KOH 8%. Kekentalan larutan karaginan selain ditentukan oleh suhu, konsentrasi, tipe karaginan, adanya ion logam juga

Gambar 9. Kekuatan gel karaginan dari perlakuan konsentrasi KOH dan volume larutan pegekstrak yang berbeda

Figure 9. Gel strength of carrageenan resulted from different concentration of KOH and volume of extraction water

Hasil uji Duncan menunjukkan bahwa rata-rata kekentalan larutan karaginan yang diekstrak dari rumput laut yang diberi perlakuan KOH 8% dengan volume larutan pegekstrak 50 kali menghasilkan kekentalan yang paling rendah dan berbeda nyata dengan perlakuan lainnya. Sedangkan kekentalan larutan karaginan dari rumput laut dengan perlakuan KOH 8% dengan volume larutan pegekstrak 50 kali dan 60 kali tidak berbeda nyata dengan perlakuan KOH 8% dan volume larutan pegekstrak 60 kali. Pada penelitian ini kekentalan yang diukur dari larutan 1,5% pada suhu 75°C berkisar antara 37-112 cps dan masih berada dalam kisaran larutan karaginan komersial yaitu berkisar antara 5-800 cps. Namun demikian pada umumnya karaginan yang ada di pasaran mempunyai kekentalan di atas 150 cps (Anonymous, 2002).

KESIMPULAN DAN SARAN

Dari hasil penelitian ini dapat disimpulkan bahwa ekstraksi karaginan dengan menggunakan bahan rumput laut yang telah diberi perlakuan KOH 8% menghasilkan karaginan dengan kadar air, kadar abu, kadar abu tak larut asam yang lebih mendekati standar karaginan yang dikeluarkan oleh FAO dibandingkan dengan perlakuan KOH 6%. Rumput laut yang diberi perlakuan KOH 6% menghasilkan rendemen dan kekentalan yang lebih baik jika di ekstraksi dengan volume larutan pegekstrak 60 kali, tetapi jika diekstraksi dengan menggunakan volume larutan 50 kali hasilnya tidak berbeda nyata. Sedangkan perlakuan alkali ternadap bahan mentah rumput laut dan volume larutan pegekstrak yang diberikan tidak berpengaruh nyata terhadap kadar sulfat dan kekuatan gel yang dihasilkan.

Dari hasil penelitian ini dapat disarankan jika rendemen dan kekuatan gel diprioritaskan maka lebih
baik dipilih perlakuan KOH 8% dan diekstraksi dengan larutan KCl 0,1% dengan volume larutan peng ekstrak 60 kali bobot rumput laut kering.

DAFTAR PUSTAKA.

