Jurnal Pascapanan dan Bioteknologi Kelautan dan Perikanan Vol. 2 No. 2, Desember 2007

PENAPISAN BAKTERI PENGHASIL ENZIM KITOSANASE YANG BERAOSIASI DENGAN SPONS LAUT

Ekowati Chasahan*, Yusro Nuri Fawzya*, Asri Pratiti** dan Tati Nurhayati***

ABSTRAK

Informasi pasar dunia menunjukkan bahwa 50% keperluan dunia akan produk turunan kitin, digunakan untuk produk suplemen kesehatan. Untuk menunjang proses produksi kitosan yang bersifat ramah lingkungan dan aman untuk konsumsi manusia, maka enzim pendegradasi kitin/kitosan sangat berperan. Penelitian ini bertujuan untuk mendapatkan bakteri penghasil enzim pendegradasi kitosan dari spons. Spons dipilih karena biota laut tersebut dikenal kaya akan senyawa bioaktif dan sebagian besar masab tubuhnya didominasi oleh bakteri. Dari 24 spons, telah berhasil diisolasi 86 isolat bakteri dan 22 di antaranya menghasilkan enzim pendegradasi kitin, termasuk di antaranya enzim kitosanase. Berdasar pada nilai indeks kitinolitik (IK) dan waktu produksi enzim, isolat KBJ 12 SB telah dipilih sebagai isolat penghasil kitosanase. Isolat tersebut menghasilkan enzim kitosanase maksimal pada hari ke-5, dengan aktivitas enzim sebesar 0,797 U/mg. Enzim kitosanase yang dihasilkan bekerja optimal pada suhu 60°C dan pH 8. Enzim stabil pada suhu 37°C dengan sisa aktivitas > 50% ketika diinkubasi selama 90 menit. Hasil identifikasi menunjukkan bahwa bakteri KBJ 12 SB memiliki sifat mirip dengan jenis Bacillus sp.

ABSTRACT: Screening of chitosanase producing bacteria associated with marine sponges By: Ekowati Chasahan, Yusro Nuri Fawzya, Asri Pratiti and Tati Nurhayati

Global market of chitin derivatives products showed that 50% are used for food supplement. Chitin degrading enzymes such as chitosanase have an important role in producing environmentally friendly chitosan and other chitin derivatives for human consumption. The objective of this research was to obtain chitin degrading enzyme, i.e. chitosanase, from bacteria isolated from marine sponges. Eighty six bacteria have been isolated from 24 sponges samples, and 22 of them were chitinolytic positive. Based on chitinolytic index value and enzyme production time, KBJ 12 SB isolate was chosen as chitosanase producing bacteria. The isolate was capable of producing enzyme at days 5, with chitosanase activity of 0.797 U/mg. The enzyme worked best at 60°C and pH 8. It was stable at 37°C, giving remaining activity of > 50% when incubated for 90 minutes. This isolate closed to Bacillus sp.

KEYWORDS: screening, chitin degrading enzymes, chitosanase, bacteria, marine sponges, Bacillus sp.

PENDAHULUAN

Bakteri, selain kapang, selama ini telah digunakan sebagai salah satu sumber potensial penghasil enzim, termasuk enzim pendegradasi kitin (enzim kitinolitik). Kelompok enzim ini akhir-akhir ini mendapat perhatian besar karena aplikasinya yang makin luas dalam bidang bioteknologi, di antaranya sebagai agen biokontrol terhadap kapang patogen dan insetka, berfungsi sebagai biopestisida, untuk memproduksi materi aktif kitooligosakarida serta untuk memproduksi protein sel tunggal, dan protoplast kapang (Patil et al., 2000).

Eksporasi enzim kitinase/kitosanase kemudian dilakukan pada tahun-tahun berikutnya untuk menjawab tantangan akan ketersediaan enzim yang berperan dalam produksi turunan kitin yang bersifat aktif seperti kitosan oligomer. Berbagai enzim kitinolitik

* Peneliti pada Balai Besar Riset Pengolahan Produk dan Bioteknologi Perikanan dan Kelautan
** Mahasiswa pada Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor (IPB)
*** Staf pengajar pada Fakultas Perikanan dan Ilmu Kelautan, Institut Pertanian Bogor (IPB)
yang telah berhasil diisolasi dari antaranya adalah kitinase dan kitosanase dari produk tradisional berbau baku udang yaitu terasi (Noviendri et al., 2006; Zilda et al., 2006). Enzim pendegradasi kitin dari bakteri yang diisolasi dari udang juga telah dilakukan oleh Putro (1982). Kitosanase termostabil dari Bacillus licheniformis MB-2 dengan kemampuan spesifik menghasilkan produk oligomer beratant 5 (pentamer) dan 7 (heptamer) telah diproduksi dari sumber air panas Manado (Chasanah et al, 2006). Ketersediaan enzim lokal diharapkan dapat menekan biaya produksi produk turunan kitin, kitosan oligomer, secara kompetitif, mengingat Indonesia memiliki peluang besar sebagai produsen produk turunan kitin tersebut.

Penelitian ini merupakan rangkaian eksplorasi enzim kitosanase dari lingkungan laut, terutama dari bakteri yang berasosiasi dengan spon. Spons merupakan biota laut yang memiliki potensi besar dalam menghasilkan senyawa bioaktif termasuk enzim. Kandungan bioaktif spons berkorelasi dengan jumlah dan jenis bakteri yang terdapat pada spons tersebut (Suryati et al., 2000).

Bahan DAN METODE

Bahan

Spons dari Perairan Mentawai diperoleh dari tim COREMAP II. Spons dipanen secara manual dengan melakukan penyelaman pada kedalaman 7-12 m di beberapa lokasi, di antaranya Pulau Gosong Silo Oinan, Pulau Potologat dan Teluk Lapi (Kepulauan Mentawai, Sumatera Utara). Setelah sampai di perahu, spons segera dibilas dengan air laut steril, dan dimasukkan ke dalam botol berisi air laut steril yang mengandung gliserol 40%. Selanjutnya spons dibawa ke laboratorium Bioteknologi, Balai Besar Riset Pengolahan Produksi dan Bioteknologi Kelautan dan Perikanan, Stili dalam kondisi dingin.

Substrat koloidal kitin dibuat menurut Arnold & Solomon (1986) dengan bahan baku kitin komersial (Sigma), sedangkan 1% kitosan larut asam asetat disiapkan menurut Uchida et al. (1988).

Isolasi Bakteri dari Spons

Spons sebanyak 2 g digerus secara aseptik menggunakan mortar steril. Hasil gerusan dimasukkan ke dalam media pertumbuhan steril sea water complete (SWC) yang terdiri dari peptone 0.3%, yeast extract 0.3%, gliserol 0.3%, dan air laut 1 L (Seimahuira et al., 2001). Selanjutnya media berisi gerusan spons diinkubasi pada penangas air goyang selama 24 jam dengan kecepatan 100 rpm dan suhu 30°C, yang ditujukan untuk penyegaran. Sebanyak 100μL campuran spons dan media cair disebarkan ke dalam cawan petri berisi media SWC padat (komposisi sama dengan media SWC cair dengan penambahan bacto agar 2%) dengan metode sebar (Lay, 1994). Setiap koloni yang tumbuh selanjutnya dimurnikan dengan cara digores pada media SWC padat. Penggorean dilakukan berulangkali sampai diperoleh koloni tunggal.

Isolasi Enzim Kitinolitik dari Bakteri Spons

Koloni tunggal yang diperoleh dari tahap sebelumnya, diambil sebanyak 1 ose dan ditrusukan ke dalam minimal syntetic media (MSM) yang diperkaya koloidal kitin dengan komposisi KH₂PO₄ 0,08%, NaCl 1%, (NH₄)₂SO₄ 0,4%, yeast extract 1%, koloidal kitin 1% dan agar 2%. Inkubasi dilakukan pada suhu 30°C selama 5 hari. Bakteri penghasil enzim kitinolitik adalah bakteri yang menghasilkan zona bening di sekelling kolonyanya. Indeks kitinolitik (IK) dihitung berdasarkan perbandingan diameter zona bening dan diameter koloni (Cody, 1989; Wirth & Wolf, 1990). Beberapa bakteri penghasil IK terbesar digunakan untuk percobaan selanjutnya.

Kurva Pertumbuhan

Kurva pertumbuhan isolat bakteri yang memiliki IK terbesar dibuat berdasarkan pengamatan terhadap pertumbuhan isolat bakteri. Pengamatan terhadap pertumbuhan bakteri diawali dengan menginokulasi 1 ose isolat murni ke dalam media pertumbuhan MSM cair. Kemudian pertumbuhan isolat tersebut diamati setiap 4 jam sekali dengan mengukur absorbansi medium pada gelombang 660 nm.

Produksi dan Ekstraksi Enzim Kitosanase

Beberapa bakteri terpilih dikultivasi di media cair MSM yang diperkaya koloidal kitin 0,5%. Sebanyak 1 ose bakteri pada fase logaritmik (diperoleh dari kurva pertumbuhan) diinkulakukan selama 20 mL medium starter, dan diinkubasi selama 15 jam pada penangas air dengan suhu 30°C, 100 rpm. Selanjutnya, sebanyak 10% (v/v) starter dipindahkan ke dalam media produksi dan diinkubasi. Pengambilan cairan dilakukan setiap hari, dan cairan fermentasi bebas sel bakteri (enzim kasar) didapatkan dengan cara mensentrifugasi cairan kultur pada 7500xg, suhu 4°C selama 15 menit.

Esai enzim kitosanase dilakukan terhadap ekstrak enzim kasar dengan menggunakan metode Yoon et al. (2000). Jumlah gula reduksi yang dihasilkan oleh reaksi enzim terhadap substrat dilentukan dengan metoda Schales (Uchida & Ohtakara, 1998) dengan kontrol penambahan enzim inaktif pada substrat yang sama (larutan kitosan 1%), dan blanko disiapkan...
dengan menggunakan akuades untuk menggantikan larutan sampel. Satu (1) unit aktivitas kitosanase didefinisikan sebagai jumlah enzim yang dapat memproduksi 1 μmol gula reduksi (glucosamine) per menit.

Penentuan kadar protein enzim kasar dilakukan berdasarkan metode Lowry (Bollag & Edelstain, 1991) menggunakan bovine serum albumin (BSA) sebagai standar. Kecepatan menghasilkan enzim dalam jumlah besar merupakan saringan kedua pemilihan bakteri penghasil kitosanase.

Karakterisasi Enzim Kitosanase dari Bakteri Terpilih

Ekstrak kasar enzim kitosanase dari enzim terpilih dipetakkan dengan ammonium sulfat 60% berdasarkan metode Bollag & Edelstain (1991). Konsentrat diperoleh dengan mensentrifugasi

Tabel 1. Bakteri penghasil enzim pendegradasi kitin yang diisolasi dari spons

<table>
<thead>
<tr>
<th>No.</th>
<th>Kode Spons/ Sponge Codes</th>
<th>Kode Isolat/ Isolate Codes</th>
<th>IK/ IC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GSO 2</td>
<td>GSO 2 SA</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>GSO 2</td>
<td>GSO 2 SB 1.38</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>GSO 2</td>
<td>GSO 2 L</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>GSO 18</td>
<td>GSO 18 S</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>GSO 18</td>
<td>GSO 18 SA 1.07</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>GSO 18</td>
<td>GSO 18 SB</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>GSO 18</td>
<td>GSO 18 LA</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>GSO 18</td>
<td>GSO 18 LB 1.33</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>GSO 18</td>
<td>GSO 18 LC</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>GSO 18</td>
<td>GSO 18 LD 1.05</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>GSO 22</td>
<td>GSO 22 SA</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>GSO 22</td>
<td>GSO 22 SB 1.05</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>GSO 22</td>
<td>GSO 22 SC</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>KBJ 2</td>
<td>KBJ 2 SA</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>KBJ 2</td>
<td>KBJ 2 SB 1.19</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>KBJ 2</td>
<td>KBJ 2 SC</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>KBJ 2</td>
<td>KBJ 2 L</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>KBJ 10</td>
<td>KBJ 10 SA</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>KBJ 10</td>
<td>KBJ 10 SB 1.23</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>KBJ 12</td>
<td>KBJ 12 LA</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>KBJ 12</td>
<td>KBJ 12 LC</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>KBS 12</td>
<td>KBS 12 SA</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>KBJ 12</td>
<td>KBJ 12SB 5.40</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>KBJ 19</td>
<td>KBJ 19 S</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>KBJ 19</td>
<td>KBJ 19 LC</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>TLP 1</td>
<td>TLP 1 SA</td>
<td>-</td>
</tr>
<tr>
<td>27</td>
<td>TLP 1</td>
<td>TLP 1 SB</td>
<td>-</td>
</tr>
<tr>
<td>28</td>
<td>TLP 1</td>
<td>TLP 1 SC</td>
<td>-</td>
</tr>
<tr>
<td>29</td>
<td>TLP 1</td>
<td>TLP 1 SD</td>
<td>-</td>
</tr>
<tr>
<td>30</td>
<td>TLP 1</td>
<td>TLP 1 SE</td>
<td>-</td>
</tr>
<tr>
<td>31</td>
<td>TLP 1</td>
<td>TLP 1 SF</td>
<td>-</td>
</tr>
<tr>
<td>32</td>
<td>TLP 6</td>
<td>TLP 6 SA</td>
<td>-</td>
</tr>
<tr>
<td>33</td>
<td>TLP 6</td>
<td>TLP 6 SB</td>
<td>-</td>
</tr>
<tr>
<td>34</td>
<td>TLP 11</td>
<td>TLP 11 SA</td>
<td>-</td>
</tr>
<tr>
<td>35</td>
<td>TLP 11</td>
<td>TLP 11 SB</td>
<td>-</td>
</tr>
<tr>
<td>36</td>
<td>TLP 11</td>
<td>TLP 11 SC</td>
<td>-</td>
</tr>
<tr>
<td>37</td>
<td>TLP 11</td>
<td>TLP 11 SD</td>
<td>-</td>
</tr>
<tr>
<td>38</td>
<td>TLP 14</td>
<td>TLP 14 SA</td>
<td>-</td>
</tr>
<tr>
<td>39</td>
<td>TLP 14</td>
<td>TLP 14 SB 1.15</td>
<td>-</td>
</tr>
<tr>
<td>40</td>
<td>TLP 14</td>
<td>TLP 14 LA 1.41</td>
<td>-</td>
</tr>
<tr>
<td>41</td>
<td>TLP 14</td>
<td>TLP 14 LB</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>TLP 2</td>
<td>TLP 2 SA 1.30</td>
<td>-</td>
</tr>
<tr>
<td>43</td>
<td>TLP 2</td>
<td>TLP 2 SB</td>
<td>-</td>
</tr>
</tbody>
</table>

Keterangan/Note: IK = Indeks Kitinolitik/
IC = Index of Chitinolytic
campuran tersebut dengan kecepatan 7500xg, selama 15 menit pada suhu 4°C. Selanjutnya, konsentrat direndam dengan 15 ml buffer fosfat 0,05 M pH 6. Penentuan pH optimal dilakukan dengan mereaksikan enzim pada buffer dengan variasi nilai pH yang berkisar antara 3 sampai 9. Buffer yang digunakan dalam penentuan pH optium adalah buffer sitrat (pH 3 dan 4), buffer sitrat fosfat (pH 4, 5 dan 6), buffer fosfat (pH 6, 7 dan 8), dan buffer asam borat (pH 8 dan 9) dengan konsentrasi 0,05 M. Penentuan suhu optimal dilakukan pada pH optimal dengan berbagai suhu inkubasi, yaitu suhu 30, 37, 50, 60 dan 70°C.

Penentuan Ketahanan Suhu Enzim

Pengujiu ketahanan enzim terhadap panas dilakukan dengan memanaskan enzim pada suhu 37, 60 dan 70°C, dan sisa aktivitas diukur setiap 15 menit pemanasan, dengan kondisi esai seperti disebutkan di atas, pada suhu dan pH optimal enzim.

Efek Ion Logam

Efek logam divalent (Mg²⁺, Mn²⁺, Li⁺, Ni²⁺, Co²⁺, Zn²⁺, Ba²⁺ dan Ca²⁺), monovalen (K⁺, Na⁺, NH₄⁺) dan trivalen (Fe³⁺) terhadap kinerja enzim diukur dengan mereaksikan enzim dengan 1mM logam tersebut di atas. Ion logam ditambahkan dalam bentuk larutan garam klorida. Aktivitas kitsanase diukur pada kondisi optimal enzim, dan dibandingkan dengan kontrol. Pada kondisi yang sama, dibuat kontrol yang tidak ditambah dengan ion logam. Esai enzim dan EDTA juga dilakukan untuk mengetahui ketergantungan enzim terhadap keberadaan ion logam.

HASIL DAN BAHASAN

Dari 24 jenis spons baik dari jaringan spons maupun cairan perendam spons (air laut dan 40% gliserol), telah diperoleh 86 isolat bakteri. Bakteri yang diperoleh didominasi oleh bakteri Gram negatif berbentuk batang. Sidarta (2000) menyebutkan bahwa 80% bakteri laut berbentuk batang termasuk dalam kelompok Gram negatif. Kelimpahan jumlah bakteri yang berhasil disisali dari setiap jenis spons berbeda, yang tertinggi dari jenis spons, perairan tempat spons tersebut diperoleh serta metode isolasi (Lee et al., 2001; Ahn et al., 2003).

Ketika ditumbuhkan dalam media padat yang mengandung koloidal kitin 1%, 22 dari 86 isolat yang diperoleh mampu mendegradasi kitin dengan membentuk zona bening di sekitar koloni bakteri. Tabel 1 menunjukkan nilai indeks kitinolitik (IK) dari setiap isolat pada saat inkubasi 5 hari. Dari hasil tersebut diperoleh 3 isolat yang memiliki nilai IK yang tertinggi, yaitu isolat dengan kode KBJ 12 SB (IK=5,40), TPP 11 SA (IK=1,80) dan TLP 14 LA (IK=1,41).

Gambar 1 memperlihatkan kurva pertumbuhan ketiga bakteri (KBJ12SB, TPP 11SA,TLP14 LA). Dari kurva pertumbuhan ini, produksi starter jam ke-8 selanjutnya digunakan untuk produksi starter isolat KBJ 12 SB dan TPP 11 SA, sedang jam ke-12 digunakan untuk memproduksi starter isolat TLP 14 LA. Pada saat jam tersebut, ketiga isolat berada pada masa pertumbuhan logaritik.

Gambar 2 menunjukkan pertumbuhan bakteri dan produksi enzim. Produksi enzim kitsanase maksimal diperoleh pada hari ke-5 (Gambar 2a), ke-7 (Gambar 2b) dan ke-6 (Gambar 2c), dengan nilai aktivitas 0,0833 U/ml atau 0,797 U/mg; 0,0803 U/ml atau 0,873 U/mg; dan 0,0567 U/ml atau 0,382 U/mg, masing-

Gambar 1. Kurva pertumbuhan bakteri KBJ 12 SB, TPP 11 SA dan TLP 14 LA.

Figure 1. Bacterial growth curve of KBJ 12 SB, TPP 11 SA and TLP 14 LA.

164
Enzyme sources	Kondisi optimal enzim/ Optimum condition of enzyme	Suhu produksi enzim/ Enzyme production temp (°C)	Waktu produksi/ Production time	Sumber/References
KBJ 12SB | 60 | 30 | 5 hari/days | Riset ini/ This research
T5a1 | 50 | 37 | 24 jam/hours | Zilda et al. (2006)
Bacillus licheniformis | 80 | 80 | 36-60 jam/hours | Chasanah (2006)
Bacillus sp. KCTC 0377Bp. | 40 | 30 | 3 hari/days | Chok et al. (2004)
Bacillus cereus | 40 | 30 | 14 jam/hours | Piza et al. (1999)
Bacillus megaterium | - | - | - | Pelletier & Sigush (1990)
Bacillus sp. | - | - | - | Pelletier & Sigush (1990)
Matsuebacter chitosanobidus | 30-40 | 30 | 4 hari/days | Park et al. (1999)
Trichoderma reesei PC-3-7 | 50 | 28 | 72 jam/ hours | Nogawa et al. (1998)

Enzyme production from several isolates is influenced by environmental conditions such as temperature and pH. The optimal temperature for enzyme production is around 30-60°C, while the optimal pH is around 4-8. The type of buffer used can also affect enzyme production. The optimization of pH and temperature for enzyme production is important in order to obtain the highest enzyme activity.
kitosanase yang bekerja optimal pada suhu 40°C (Park et al., 1999; Piza et al., 1999; Choi et al., 2004). Enzim kitosanase dari 2 strain bakteri mesofilik yang diisolasi dari air dan tanah asal Jepang dilaporkan memiliki suhu optimal 40-50°C (Mahata et al., 2005). Enzim kitosanase yang diisolasi dari terasi, yaitu dari isolat T5a1, juga bekerja optimal pada suhu 50°C dan pH 7, tetapi stabil pada suhu 40°C selama 200 menit (Zilda et al., 2006). Enzim-enzim tersebut di atas, yang diisolasi dari bakteri mesofilik dan diproduksi dengan suhu sesuai pertumbuhan bakterinya, rata-rata memiliki suhu optimal yang lebih tinggi dari suhu produknya, tetapi tidak stabil pada suhu optimal tersebut. Hal itu berarti, bahwa aplikasi penggunaan enzim tersebut nantinya hanya pada suhu operasi proses di bawah suhu optimum enzim (enzim tsb memiliki kestabilan yang relatif tinggi) sehingga enzim tersebut tidak dapat dioptimalkan.

Enzim KBJ 12 SB bersifat stabil pada suhu 37°C (Gambar 5). Hal ini berarti bahwa enzim tersebut meskipun mampu bekerja maksimal pada suhu 60°C, diperkirakan tidak mampu mempertahankan struktur tiga dimensinya pada suhu 60°C lebih dari 15 menit. Pada suhu optimum, enzim bekerja maksimal dan struktur tiga dimensi protein enzim pada posisi sedemikian rupa sehingga sisi aktif enzim tersebut dalam konformasi yang sempurna untuk bereaksi dengan substrat. Pada kondisi terdenaturasi akibat suhu tinggi, enzim tersebut tidak dapat lagi mempertahankan struktur tiga dimensinya. Dalam aplikasinya, enzim tersebut tidak dapat dipakai pada reaksi dengan suhu tinggi di atas suhu optimalnya atau pada suhu optimal (60°C) lebih dari 15 menit.

Ion logam Cu²⁺ secara signifikan mampu menghambat enzim kitosanase KBJ 12 SB, sedangkan Na⁺, Zn²⁺, Co²⁺ dan Fe³⁺ sedikit
menghambat enzim tersebut (Gambar 6). Tampaknya penambahan ion logam tidak berpengaruh nyata pada pensingkatan aktivitas enzim, karena itu penambahan EDTA juga tidak memberikan kontribusi terhadap aktivitas enzim. Hal yang hampir sama juga ditunjukkan oleh kitosanase yang berasal dari isolat *Matsuebacter chitosanobidus* 3001. Enzim kitosanase tidak terpengaruh oleh beberapa ion logam seperti Ba²⁺, Co²⁺, Hg²⁺, Ca²⁺, Cu²⁺, Mg²⁺, Fe³⁺, Mn²⁺ dan Zn²⁺. Kitosanase tersebut dapat dihambat oleh ion Ag⁺ (Park et al., 1999). Sementara enzim kitosanase yang dihasilkan oleh isolat T5a1 dapat dipengaruhi oleh ion Ca²⁺ yang meningkatkan aktivitas sampai 37% (Zilda et al., 2006).

Identifikasi terhadap isolat KBJ 12 SB menunjukkan bahwa isolat tersebut kemungkinan besar adalah *Bacillus* sp. dengan ciri-ciri dan sifat biokimia seperti pada Tabel 2. *Bacillus* sp. merupakan spesies yang mudah ditemukan pada berbagai ekosistem, baik daratan maupun pada ekosistem perairan. Oguntuyinbo (2007) melaporkan mengenai keragaman *Bacillus* yang hidup di perairan laut, dan dari beberapa isolat yang telah diisolasi dengan media yang mengandung mangan, dua di antaranya teridentifikasi sebagai *Bacillus* sp. Penelitian yang hampir serupa juga dilakukan oleh Bradley Tebo yang berhasil mengisolasi *Bacillus* sp. SG-1 dari perairan Guaymas Basin di Teluk California, Amerika Serikat (J. Craig Venter Institute, 2005).

KESIMPULAN

- Dari 24 sampel spons, 86 isolat tunggal berhasil diisolasi dan 22 di antaranya menghasilkan enzim pendegradasi kitin (kitinolitik).
- Isolat KBJ 12 SB menunjukkan potensi kitinolitik yang terbesar dengan nilai IK sebesar 5,40.
- Kitosanase yang dihasilkan oleh isolat KBJ 12 SB memiliki waktu produk selama 5 hari.
- Aktivitas kitosanase mencapai kondisi optimal pada pH 8 dan suhu 60°C. Enzim ini cukup stabil pada suhu reaksi 37°C selama 90 menit.
- Pemberian ion logam Cu²⁺ menghambat enzim tersebut kitosanase asal bakteri KBJ 12 SB.
- Isolat KBJ 12 SB diduga merupakan bakteri *Bacillus* sp.

UCAPAN TERIMA KASIH

Ucapan terimakasih disampaikan kepada COREMAP II yang telah menyediakan sampel spons.

DAFTAR PUSTAKA

