PENGUNGAAN ALGINAT PADA FORMULASI PENYALUT TIPIS TABLET VITAMIN A

Dina Fransiska⁷ dan Murdinh⁷

ABSTRAK

Penelitian penggunaan alginat sebagai bahan penyalut tipis (film coating) pada tablet vitamin A telah dilakukan. Pada penelitian ini digunakan alginat yang merupakan hasil ekstraksi dari rumput laut coklat Sargassum sp. Formula larutan penyalut terdiri dari 5 perlakuan yaitu perlakuan A (1,00 g alginat + 0,20 g PEG), perlakuan B (1,25 g alginat + 0,25 g PEG), perlakuan C (1,5 g alginat + 0,30 g PEG), perlakuan D (1,75 g alginat + 0,35 g PEG) dan sebagai pembanding adalah (10 g HPMC + 1 g PEG). Uji yang dilakukan terhadap tablet inti dan tablet salut adalah uji visual, keseragaman ukuran, keseragaman bobot, keseragaman kandungan bahan aktif, kekerasan, keregangan, waktu hancur, dan uji stabilitas vitamin A. Hasil analisis menunjukkan bahwa perlakuan yang terbaik pada penelitian ini adalah perlakuan D.

ABSTRACT: The use of alginate in film coating formulation of vitamin A tablet. By: Dina Fransiska and Murdinh

Study on the use of alginate in film coating formulation of vitamin A tablet has been conducted. The alginate used in this study was extracted from Sargassum sp. seaweed. The film coating formula consisted of: A (1.00 g alginat + 0.20 g PEG); B (1.25 g alginat + 0.25 g PEG); C (1.50 g alginat + 0.30 g PEG); D (1.75 g alginat + 0.35 g PEG); while reference tablet contained of 10 g HPMC and 1.0 g PEG. Analysis conducted were the appearance, homogeneity, disintegration time, hardness, friability and stability of vitamin A. The results showed that the best formulation of vitamin A film coating was treatment D.

KEYWORDS: alginate, coating film, tablet, vitamin A

PENDAHULUAN

Polimer pembentuk lapisan tipis (film former) harus mempunyai kemampuan untuk membentuk lapis tipis yang koheren pada permukaan bahan yang akan disalut dan pada kondisi penyalutan. Selain itu, polimer yang baik harus larut atau tercampur homogen dalam pelarut yang digunakan, stabil terhadap pengaruh luar, tidak memiliki warna, rasa ataupun bau yang tidak enak, inert terhadap bahan aktif, dapat bercampur dengan bahan tambahan lain dalam larutan penyalut, tidak toksik, dan dapat menghasilkan produk yang menarik (Agoes, 1983; Swabrick & Boylan, 1988).

Vitamin A merupakan obat yang sensitif terhadap kelembaban, udara, dan cahaya. Selain itu, zat ini juga mengalami oksidasi terutama dikatalisis oleh logam besi dan tembaga. Oleh sebab itu, perlu dilakukan penyalutan pada tablet yang mengandung...
Alginat merupakan polimer hidrokoloid polisakarida yang dihasilkan dari proses ekstraksi rumput laut *Sargassum* sp. yang sangat potensial untuk dikembangkan dan dimanfaatkan karena banyak dibutuhkan dalam industri makanan maupun non pangan. Dalam industri pangan, alginat dapat digunakan sebagai bahan untuk membuat kemasan edible atau lebih dikenal dalam bentuk edible film atau edible coating (Glicksnan, 1983). Edible coating sendiri sudah berkembang sejak lama dan sudah digunakan sebagai pelapis buah jeruk dan lemon untuk meningkatkan masa simpannya; juga digunakan untuk pelapis produk, produk hasil laut, sosis, dan obat-obatan terutama untuk pelapis kapsul (Krocha et al., 1994).

Alginat memiliki kemampuan membentuk film, sebagai pengikat yang bersifat kohesif, dan membantu melindungi cahaya tablet sehingga dapat digunakan sebagai bahan penyaluat tipis yang baik. Penambahan natrium alginat dan pengendalian lapis tipis sekunder dapat meningkatkan efek maltodekstrin sebagai polimer pembentuk lapis tipis (Forster, 2002).

Penggunaan alginat sebagai bahan penyaluat lapisan tipis dalam penelitian ini dimaksudkan untuk lebih meningkatkan pertanaman alginat lokal di dalam negeri, khususnya di bidang farmasi. Penelitian ini bertujuan untuk mengetahui kemampuan alginat yang diekstrak dari rumput laut *Sargassum filipendula* sebagai bahan penyaluat tipis pada tablet vitamin A dan menentukan formula penyaluat tipis terbaik untuk tablet vitamin A.

BAHAN DAN METODE

Bahan

Bahan–bahan yang digunakan untuk pembuatan formula penyaluat tipis adalah alginat yang diekstrak
dari rumput laut *Sargassum filipendula*, vitamin A (Roche), Aviceil PH 102 (Asahi Kasei Co), laktosa anhidrat (DMV International), talk, magnesium stearat (Indofarma), aerosil (Indofarma), natrium bisulfit, pharmacoat 606 G (Shin Etsu), dan PEG 6000 (Indofarma).

Peralatan yang digunakan adalah mesin pencetak tablet, *Punch* dan *die concave*, penci penyalut, alat uji kekerasan tablet (Erweka TBH 28), alat uji keregangan tablet (Erweka TAR), alat uji waktu hancur (Erweka ZT 3), jangka sorong digital (Mitutoyo), viskometer (Brookfield models RV), timbangan analitik, termometer, *hair dryer*, *spray gun* Type L Osaka Air machine MFG Co., Ltd., kompresor (Swan), higrometer, *stopwatch*, spektrofotometer UV-VIS (Shimadzu), dan alat-alat gelas.

Metode

Pembuatan Tablet Inti Vitamin A

Massa tablet dicetak dalam bentuk cembung menggunakan metode cetak langsung dengan bobot masing-masing 300 mg. Komposisi tablet inti dapat dilihat pada Tabel 1. Pembuatan tablet inti tidak membutuhkan waktu yang lama karena setelah bahan aktif dan bahan-bahan tambahan dicampur homogen dapat langsung dicetak.

Bahan-bahan tambahan yang digunakan dalam pembuatan tablet inti antara lain: *Aviceil* PH 102 dan laktosa anhidrat sebagai bahan pengisi, pengikat, dan penghancur. Talk dan magnesium stearat sebagai lubricant, glidant, dan antiadherent, aerosil sebagai adsorbent, dan natrium bisulfit sebagai antioksidan.

Pembuatan Penyalutan pada Tablet Inti

Tablet inti dilakukan penyalutan dengan berbagai perlakuan yaitu:
- Perlakuan A : 1.00 g Alginat + 0.20 g PEG
- Perlakuan B : 1.25 g Alginat + 0.25 g PEG
- Perlakuan C : 1.50 g Alginat + 0.30 g PEG

<table>
<thead>
<tr>
<th>Bahan/Material</th>
<th>Komposisi/Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A/Vitamin A</td>
<td>12.28</td>
</tr>
<tr>
<td>Laktosa anhidrat/Anhidrid Lactose</td>
<td>37.22</td>
</tr>
<tr>
<td>Aviceil PH 102</td>
<td>45.00</td>
</tr>
<tr>
<td>Magnesium stearat/Stearic magnesium</td>
<td>1.00</td>
</tr>
<tr>
<td>Talk/Talc</td>
<td>3.00</td>
</tr>
<tr>
<td>Aerosil/Aerosil</td>
<td>1.00</td>
</tr>
<tr>
<td>Natrium bisulfit/Sodium bisulphyte</td>
<td>0.50</td>
</tr>
<tr>
<td>Jumlah/Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>
- Perkakan D : 1,75 g Alginat + 0,35 g PEG
- Pembanding : 10 g Pharmacoat + 1 g PEG

Bahan lain yang digunakan dalam formula larutan penyakit tipis pada penelitian ini adalah 0,5 gram TiO₂ dan 100 mL akuades. Sebagai kontrol adalah tablet inti yang tidak disalut.

Pada proses penyalutan, penyemprotan larutan dilakukan sedikit demi sedikit dengan interval waktu yang relatif singkat. Hal ini dilakukan untuk menghindari basahnya tablet secara berlebihan akibat penggunaan air sebagai pelarut yang sukar menguap. Proses penyalutan dilakukan sampai penyalutan pada tablet mengerang (2,5–4 jam).

Pengujuan mutu tablet inti dan tablet salut vitamin A meliputi uji visual, keseragaman ukuran, keragaman bobot, kekerasan tablet, keregasan tablet, waktu hancur tablet, dan stabilitas vitamin A. Pada uji visual, tablet vitamin A yang dihasilkan dilihat bentuk, warna secara keseluruhan, dan keadaan permukaannya.

Uji keseragaman sedian terdiri dari keseragaman bobot dan keseragaman kandungan (Farmakope Indonesia, 1995). Uji keseragaman ukuran dilakukan dengan mengukur tebal dan diameter tablet dengan jangka sorong, kemudian dihitung rata-ratanya dan koefisien variasinya. Uji keseragaman bobot dilakukan dengan menimbang 30 tablet vitamin A. Uji keseragaman kandungan tablet vitamin A dilakukan secara spektrofotometri UV-Vis pada panjang gelombang 324,6 nm.

Uji waktu hancur tablet dilakukan dengan memasukkan 5 tablet vitamin A dalam keranjang yang di bawahnya terdapat kasa bawah ukuran 10 mesh, dimasukkan satu cakram pada tiap tabung dan dicelupkan ke dalam air bersuhu 37±2°C sebanyak 800 mL. Keranjang dinaik-turunkan secara teratur (30 kali/menit). Tablet dinyatakan hancur jika tidak ada bagian tablet yang tertinggal di atas kasa atau tidak mempunyai inti yang jelas. Waktu yang tertera pada alat dicatat sebagai waktu hancur tablet (Farmakope Indonesia, 1979).

Uji stabilitas vitamin A dilakukan dengan menguji stabilitas kimia yang dipercepat terhadap vitamin A di dalam tablet salut maupun di dalam tablet inti (tidak disalut) sebagai pembanding, pada kondisi penyimpanan suhu 50°C dan kelembaban relatif (RH) 75±5% selama 17 hari. Uji dilakukan dengan cara menetapkan kadar vitamin A dalam tablet pada hari ke-1, 5, 9, 13, dan 17 menggunakan spektrofotometer UV-VIS. Dari penurunan kadar yang diperoleh dapat dihitung nilai konstan laju reaksi (K) tablet inti dan tablet salut masing-masing perlakuan.

HASIL DAN BAHASAN

Formulasi dan Pembuatan Tablet Inti

Massa tablet harus memenuhi persyaratan sifat air dan kompresibilitas karena sifat air dan serbuk akan mempengaruhi keseragaman bobot tablet dan keseragaman kandungan berdasarkan kecepatan dan volume serbuk yang akan mengisi cetakan tablet. Kompresibilitas penting untuk menentah apakah massa tablet dapat dicetak yang baik. Massa tablet memiliki laju alir 13,80 g/detik, sudut diam sebesar 30, 20 derajat yang berarti serbuk dapat mengalir dengan bebas dan indeks kompresibilitas 16%. Hasil memenuhi persyaratan laju alir dan kompresibilitas yang baik yaitu lebih besar dari 10 g/detik untuk laju alir dan 12–16% untuk indeks kompresibilitas.

Tablet inti yang diperoleh berwarna putih, berbintik-bintik kuning, permukaan tablet cembung, kasar, dan tidak mengkilat. Hasil evaluasi tablet inti dapat dilihat pada Tabel 2.

Penyulutan Tablet dengan Alginat

Pada tablet pembanding, formula penyulutan lapisan tips sebagai pembanding menggunakan hidroksemetriprol selulosa (HPMC, Pharmacoat 606). HPMC memiliki sifat polimer yang ideal untuk penyulutan lapis tips dan banyak digunakan di industri-industri farmasi. HPMC merupakan polimer yang larut dalam air ataupun pelarut organik, stabil terhadap panas, cahaya, udara, dan kelembaban. Lapisan yang dibentuk fleksibel, mempunyai toleransi yang baik terhadap pewarna, dan zat tambahan lainnya serta resisten terhadap abrasi (Shin Etsu Chemical, 2002).

Penambahan polietilen glikol 6000 berfungsi sebagai plastisizer yang dapat meningkatkan elastisitas dan fleksibilitas lapis tips agar tidak rapuh, mudah pecah, dan mudah lepas, serta mengurangi lengket. Penambahan plastisizer umumnya 10-20% dari bobot polimer. Penggunaan TiO₂ pada semua formula berfungsi sebagai zat pemburam atau pewarna yang akan membumbarkan lapis tips dengan memberikan warna putih transparan sehingga warna tablet inti masih terlihat. Pemakaian TiO₂ dalam
formula tidak dapat lebih dari 0,5% karena zat ini tidak larut dalam air tetapi membentuk dispersi sehingga konsentrasi yang tinggi dapat menyebabkan pengendapan TiO₂ dalam larutan penyalut dan menghasilkan salutan yang kasar pada tablet.

Di lain pihak, pada formula yang menggunakan alginate, proses penyalutan berlangsung lebih lama karena viskositas larutan penyalut perlakuan A sampai D lebih rendah daripada viskositas larutan penyalut pembanding. Laras penyalutan juga dipengaruhi oleh besarnya konsentrasi polimer yang digunakan dalam formula yaitu semakin sedikit polimer yang digunakan maka penyalutan membutuhkan waktu yang lebih lama.

Tabel 2. Karakteristik tablet kontrol
Table 2. Characteristics of control tablet

<table>
<thead>
<tr>
<th>Parameter/Parameter</th>
<th>Nilai/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobot/Weight (mg)</td>
<td>300.10 ± 1.59</td>
</tr>
<tr>
<td>Diameter/Diameter (mm)</td>
<td>9.06 ± 0.01</td>
</tr>
<tr>
<td>Ketebalan/Thickness (mm)</td>
<td>4.93 ± 0.05</td>
</tr>
<tr>
<td>Kadar Vitamin A/Vitamin A content (%)</td>
<td>104.87 ± 2.14</td>
</tr>
<tr>
<td>Kekerasan/Hardness (Kp)</td>
<td>9.15± 0.93</td>
</tr>
<tr>
<td>Keregasan/Friability (%)</td>
<td>0.20</td>
</tr>
<tr>
<td>Waktu hancur/Disintegration time (menit/minutes)</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Seluruh tablet salut (perlakuan A sampai D) dan pembanding memenuhi persyaratan karakter tablet. Hasil karakterisasi tablet salut dapat dilihat pada Tabel 3.

Pengamatan Visual

Tablet kontrol berwarna putih dengan bintik-bintik kuning yang berasal dari warna vitamin A, permukaan tablet cembung, kasar, tidak mengkilat dan tepi tablet rata. Dari pengamatan visual terhadap tablet inti maka perlu dilakukan penyalutan untuk meningkatkan karakteristik visual dari tablet.

Tablet pembanding mempunyai permukaan yang halus dan tidak mengkilat, tepi tablet rata, berwarna

Tabel 3. Karakteristik tablet salut
Table 3. Characteristics of coated tablet

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Pembanding/Reference</th>
<th>Perlakuan/Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Bobot/Weight (mg)</td>
<td>314.00±1.48</td>
<td>307.50±2.01</td>
</tr>
<tr>
<td>Diameter/Diameter (mm)</td>
<td>9.63±0.07</td>
<td>9.17±0.05</td>
</tr>
<tr>
<td>Ketebalan/Thickness (mm)</td>
<td>5.11±0.06</td>
<td>5.03±0.06</td>
</tr>
<tr>
<td>Kadar Vitamin A/Vitamin A content (%)</td>
<td>101.67±0.69</td>
<td>98.48±1.56</td>
</tr>
<tr>
<td>Kekerasan/Hardness (Kp)</td>
<td>19.77±0.91</td>
<td>15.27±0.49</td>
</tr>
<tr>
<td>Waktu hancur/Disintegration time (menit/minutes)</td>
<td>6.24±0.09</td>
<td>2.88±0.12</td>
</tr>
<tr>
<td>Keregasan/Friability(%)</td>
<td>0.03</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Keterangan/Note:
- Pembanding/Reference : 10 g Pharmacoat + 1 g PEG
- Perlakuan/Treatment A : 1,00 g Alginit/Alginate + 0.20 g PEG
- Perlakuan/Treatment B : 1,25 g Alginit/Alginate + 0.25 g PEG
- Perlakuan/Treatment C : 1,50 g Alginit/Alginate + 0.30 g PEG
- Perlakuan/Treatment D : 1,75 g Alginit/Alginate + 0.35 g PEG

24
putih bersih dengan bintik-bintik warna kuning yang tersamar. Pada tablet dengan perlakuan A sampai D, permukaannya halus namun mengkilat, tepi rata, dan berwarna putih bersih dengan bintik-bintik kuning yang tersamar.

Pada perlakuan A sampai D terdapat perbedaan derajat warna tablet dimana semakin tinggi konsentrasi alginat yang digunakan dalam formula, semakin efektif dalam menutup bintik-bintik warna kuning dan warna kuning tersebut makin tersamar. Selain itu, meningkatnya konsentrasi alginat dalam formula juga meningkatkan efek mengkilat pada permukaan tablet.

Keseragaman Sediaan Tablet

Tablet memenuhi persyaratan keseragaman sediaan bila 10 satuan sediaan terletak antara 85–115% dan simpangan baku relatif tidak lebih dari 6%. Baik tablet inti dan tablet salut formula 1–5 memenuhi persyaratan tersebut (Tabel 3).

Hasil analisis menunjukkan bahwa konsentrasi polimer mempengaruhi bobot tablet dan diameter tablet namun tidak berpengaruh nyata terhadap tebal tablet. Semakin besar konsentrasi polimer yang digunakan dalam formula maka bobot tablet mengalami peningkatan. Kadar vitamin A dalam tablet yang telah disalut masih memenuhi persyaratan yang ditentukan walaupun terjadi penurunan kadar vitamin A dibandingkan tablet kontrol. Hal ini disebabkan kondisi penyalutan yang kurang memadai, interaksi zat aktif dengan udara dan panas selama proses penyalutan. Tablet yang telah disalut mengalami penambahan diameter yang semakin meningkat apabila jumlah polimer yang digunakan untuk lapis tipis bertambah besar.

Berdasarkan hasil uji keseragaman ukuran, maka tablet salut dengan perlakuan A sampai D masih memenuhi persyaratan keseragaman ukuran.

Kekerasan Tablet

Seperti halnya ketebalan tablet, kekerasan tablet merupakan fungsi dari volume
\(d\) dan gaya kompresi. Pada penambahan gaya kompresi maka nilai kekerasan akan meningkat dan ketebalan tablet akan berkurang, sedangkan pada gaya kompresi tetap, kekerasan tablet akan meningkat dengan meningkatnya volume \(d\) dan berkurang dengan berkurangnya volume \(d\).

Hasil analisis menunjukkan bahwa perlakuan pada penelitian ini berpengaruh nyata terhadap kekerasan tablet namun perlakuan D tidak berbeda nyata dengan pembanding. Kontrol mempunyai kekerasan rata-rata yang baik untuk penyalutan (6–10 Kp) yaitu sebesar 9,1 Kp. Tablet yang telah disalut mengalami kenaikan kekerasan dengan rentang 79,79–141,71% terhadap tablet kontrol. Tablet kontrol harus memenuhi resistensi dan kekerasan yang cukup agar tidak mudah patah karena selama penyalutan tablet akan mengalami bantingan di dalam panci penyalut, dan di samping itu kekerasan yang rendah akan memperlambat absorpsi pelarut pada waktu dilakukan penyalutan.

Keregasan Tablet

Keregasan tablet harus serendah mungkin karena jika terlalu tinggi akan menyebabkan terbentuknya partikel halus dan kasar yang akan menempel pada permukaan tablet selama proses penyalutan sehingga menghasilkan lapis tipis yang kasar dan tidak rata.

Hasil analisis menunjukkan bahwa konsentrasi alginat berpengaruh nyata terhadap keregasan tablet yang dihasilkan. Semakin tinggi konsentrasi alginat yang digunakan, keregasan tablet menjadi semakin rendah. Tablet kontrol mempunyai nilai keregasan yang lebih tinggi daripada tablet yang disalut alginat. Baik tablet kontrol maupun tablet salut memenuhi persyaratan nilai keregasan yang baik yaitu kurang dari 0,8%. Uji kekerasan tablet berkaitan dengan uji keregasan, umumnya tablet dengan kekerasan yang tinggi akan memiliki keregasan yang rendah.

Waktu Hancur Tablet

Di dalam lambung, obat harus berada dalam bentuk larutan agar dapat diabsorpsi ke dalam sirkulasi sistemik. Pada sediaan tablet, sebelum obat terlarut, tablet harus terdisintegrasi atau hancur menjadi partikel-partikel kecil atau granul. Waktu hancur digunakan sebagai salah satu parameter dalam pembuatan formula tablet yang optimal dan kontrol dalam proses untuk menjamin keseragaman antar batch. Menurut Farmakope Indonesia (1979), waktu hancur untuk tablet tidak bersalut tidak lebih dari 15 menit dan untuk tablet bersalut tidak lebih dari 60 menit.

Berdasarkan hasil analisis, baik tablet kontrol maupun tablet salut dari seluruh formula memenuhi persyaratan uji waktu hancur. Selain itu, juga dapat dilihat bahwa terjadi peningkatan waktu hancur terhadap tablet seiring dengan peningkatan konsentrasi alginat dan PEG dalam formula. Tablet yang telah disalut akan mempunyai waktu hancur yang lebih lama bila jumlah polimer yang digunakan untuk penyalutan bertambah besar.

Kestabilan Kimia Vitamin A

Kestabilan kimia menunjukkan bahwa setiap zat aktif dalam sediaan tetap memiliki sifat kimia dan

Berdasarkan hasil nilai konstanta laju reaksi pada Tabel 5 diketahui bahwa penyimpanan tablet dengan perlakuan A sampai D dan perlakuan pembanding dapat mempertahankan vitamin A, dibandingkan dengan perlakuan yang terdapat pada kontrol. Dari hasil ini juga diketahui bahwa penambahan jumlah alginate dan PEG dapat mempertahankan vitamin A dalam tablet dan semakin tinggi jumlah alginate dan PEG yang digunakan maka vitamin A semakin stabil.

KESIMPULAN

1. Hasil penelitian menunjukkan bahwa alginate dari rumput laut *Sargassum filipendula* dapat digunakan sebagai bahan penyalut tipis (film coating) pada tablet Vitamin A.

2. Perlakuan alginate 1,00–1,75 g pada formula A sampai D memenuhi syarat uji tablet dari segi evaluasi visual, keseragaman ukuran, keseragaman sediaan, kekerasan, keregasan, dan waktu hancur.

3. Formula yang memberikan perlindungan dan stabilitas optimal terhadap vitamin A jika dibandingkan dengan tablet pembanding adalah perlakuan D, yaitu 1,75 g alginate dan 0,35 g PEG.

Tabel 4. Kadar vitamin A pada penyimpanan suhu 50°C dan kelembaban 75±5%

<table>
<thead>
<tr>
<th>Waktu/Time (Hari/Days)</th>
<th>Jumlah Vitamin A Tersisa/Amount of residual Vitamin A (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kontrol/Control</td>
</tr>
<tr>
<td>1</td>
<td>100.00</td>
</tr>
<tr>
<td>5</td>
<td>98.32</td>
</tr>
<tr>
<td>9</td>
<td>97.19</td>
</tr>
<tr>
<td>13</td>
<td>95.51</td>
</tr>
<tr>
<td>17</td>
<td>94.78</td>
</tr>
</tbody>
</table>

Tabel 5. Nilai konstanta hasil reaksi (K) dan koefisien korelasi (R) vitamin A dalam tablet pada penyimpanan suhu 50°C dan RH 75±5%

<table>
<thead>
<tr>
<th>Perlakuan/Treatment</th>
<th>K</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol/Control</td>
<td>3.455 x 10⁻³</td>
<td>0.9945</td>
</tr>
<tr>
<td>Pembanding/Reference</td>
<td>1.554 x 10⁻³</td>
<td>0.9979</td>
</tr>
<tr>
<td>A</td>
<td>2.879 x 10⁻³</td>
<td>0.9976</td>
</tr>
<tr>
<td>B</td>
<td>1.842 x 10⁻³</td>
<td>0.9980</td>
</tr>
<tr>
<td>C</td>
<td>1.727 x 10⁻³</td>
<td>0.9999</td>
</tr>
<tr>
<td>D</td>
<td>1.439 x 10⁻³</td>
<td>0.9970</td>
</tr>
</tbody>
</table>

Keterangan/Note:

- Pembanding/Reference : 10 g *Pharmacot* + 1 g PEG
- Perlakuan/Treatment A : 1,00 g Alginate/Alginate + 0,20 g PEG
- Perlakuan/Treatment B : 1,25 g Alginate/Alginate + 0,25 g PEG
- Perlakuan/Treatment C : 1,50 g Alginate/Alginate + 0,30 g PEG
- Perlakuan/Treatment D : 1,75 g Alginate/Alginate + 0,35 g PEG
DAFTAR PUSTAKA

